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Collision detection and collision avoidance in a 3D dynamic environment are critical

problems in various applications such as computer animation, virtual reality, com-

puter games, robotics, CAD/CAM, computational physics and computational biology.

Collision detection is to detect if different moving objects come to occupy the same

spatial position at the same time in a computer simulated environment; it is needed for

triggering proper action to either avoid collision or determine correct physical response

due to collision. Continuous collision detection, on the other hand, further concerns

whether objects are guaranteed to be colliding or collision-free within a continuous

time span.

This thesis studies collision detection, as well as continuous collision detection of an

important class of surfaces, namely the quadrics, which encompasses all the surfaces

of degree two, and its 2D counterpart—the conics. We aim to produce efficient and

exact collision detection results, which are much desired in many applications where

accurate shape is encoded more efficiently using quadric surfaces than using piecewise

linear representation. Our approach is algebraic, therefore it requires neither geometric

approximation of curved boundary surfaces nor discrete sampling of motion time

interval, which are the main sources of inefficiency and inaccuracy of the conventional

collision detection paradigm.

We deal with the collision detection of ellipses and ellipsoids, whose results could

be extended readily to solve the collision problems of other conic curves and quadric



surfaces. We are interested in the composite quadrics models (CQMs) that are com-

prised of piecewise quadric or linear surface patches, and in particular, the CQMs

whose boundary curves are conics sections because such objects are widely used in

practice. Base on the algebraic formulation, robust and efficient numerical algorithms

are devised to solve the CCD problems.

We illustrate the robustness and effectiveness of our algorithms with experiments

and numerical examples, whose results demonstrate that they are practical for collision

detection in relation to quadrics or conics primitives.
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1
I N T R O D U C T I O N

Motion design, analysis, and planning are important research topics that furnish a

common scientific base to diverse engineering disciplines such as robotics, CAD/CAM,

computer animation, simulation of virtual environments and 3D computer games [13,

21, 25, 47, 55]. For the simulation of realistic dynamical motions, rigid objects should

not penetrate each other; and when they collide, impulsive response needs to be

handled properly. Real-time collision detection is also crucial to physics engines for 3D

computer games and simulation of virtual environments [14].

Quadric surfaces are widely used in practice. Ellipsoids and capped cylinders or

cones are often used as bounding volumes of complex geometry in graphics and

robotics. The rising interests in modeling human characters in computer game/anima-

tion and organic forms in bio-science make ellipsoids a serious contender for shape

representation. Furthermore, most mechanical parts can accurately be modeled with

simple quadrics, such as spheres, cones, and cylinders. Through composite represen-

tation or CSG composition, an even wider class of complex objects are modeled by

quadric surfaces.

1.1 use of bounding volumes in collision detection

Collision detection for general freeform moving objects is computationally very ex-

pensive. A two-phase approach to collision detection is widely adopted in practice.

Objects are enclosed by simple geometric entities, called bounding volumes, to which

simpler collision detection is first applied; more complicated collision detection com-
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putation on the detailed objects will only be carried out if their bounding volumes are

found to be overlapping. There are, in general, two criteria in choosing the type of

bounding volumes to be used in a particular application. The first is bounding tightness:

bounding volumes should be as tight as possible so that when two enclosed volumes

are separate, their bounding volumes should also be separate for most of the time.

This criterion saves time by ensuring that many non-colliding pairs are not subject to

further processing once their bounding volumes are found to be separate. The second

criterion is that collision detection for a pair of bounding volumes should be simple

and very fast, since this operation usually needs to be done many times, i.e. for every

pair of objects present in an environment.

Simple geometric primitives such as spheres [25], axis-aligned bounding boxes [23,

67], oriented bounding boxes [21], and discrete oriented polytopes [33] have been

widely used as bounding volumes for collision detection. Due to its simplicity and

superior capability of shape approximation, the ellipsoid is used as the bounding

volume for robotic arms and convex polyhedra for collision detection [28, 53, 61, 75].

Bischoff and Kobbelt [5] used a set of overlapping ellipsoids for a compact, robust,

and level-of-detail representation of 3D objects defined as polygonal meshes. Hyun et

al. [26] showed that sweeps of ellipsoids fit tightly to human arms and legs. To obtain

a set of tight bounding ellipsoids for a 3D object (Figure 1), Lu et al. [40] adopted a

variational approach to compute an optimal segmentation based on an affine invariant

measure. Figure 2(c) shows a human character bounded by the same number of

ellipsoids as that of boxes in Figure 2(b). The total volume of the bounding ellipsoids

in Figure 2(c) is about 35% less than the total volume of bounding boxes in Figure 2(b),

meaning that ellipsoid-based collision detection for human characters or other similar

natural object is more accurate than box-based collision detection. Thus ellipsoids have

much potential as a bounding volume for 3D freeform objects.

1.2 collision detection of ellipsoids

Among all the quadric surfaces, the ellipsoid deserve its own right of studying since

it is the only member which is close and compact, and therefore is readily used as
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Figure 1: A dinopet is tightly bounded by a set of 33 bounding ellipsoids. which are
automatically generated using the algorithm in [40].

(a) (b) (c)

Figure 2: A virtual human character in (a) is bounded by the same number of boxes
and ellipsoids. Total volume of bounding ellipsoids in (c) is 35% less than
that of bounding boxes in (b).

bounding volume for collision detection. In fact, some objects can easily be modelled

by ellipsoids or are inherently ellipsoidal in shape.

In the past, collision detection for ellipsoids was usually performed by faceting,

and then applying a collision package appropriate to general convex polyhedra, such

as GJK [20], I-COLLIDE [9], or V-Clip [43]. A drawback with this approach is that

accuracy and efficiency are compromised by polyhedral approximation.

Rimon and Boyd [53] present a numerical technique for computing the quasi-distance,

called margin, between two separate ellipsoids. Sohn et al. [62] compute the distance

between two ellipsoids using line geometry. Using the Lagrange conditions, Lennerz

and Schömer [35] present an algebraic algorithm for computing the distance between
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two quadrics. Distance computation is a more difficult problem than collision detection

since the latter can be solved as a subproblem of the former—a positive distance

between two objects implies no collision between the two.

Ellipsoids are also used to represent the shapes of soil particles in geo-mechanics

and the iso-potential surface of a molecule in computational physics [12]. The overlap

test for ellipsoids is of high interest in these fields [39, 48]; however, these methods

are mainly based on numerical iterations, leaving much to be desired for efficiency.

Moreover, they are limited to the case of stationary ellipsoids. The algorithms described

by Baraff [2] and Gilbert and Foo [19] also belong to this category, but are applicable

to a wider class of objects bounded by smooth surfaces. In the field of astronautics,

ellipsoids are used to represent threat volumes of space objects to determine possible

close approach events [10].

1.3 continuous collision detection

A typical framework for collision detection between moving objects is to sample the

time interval of the motion at discrete time instants and test whether the objects

intersect at each sampled instant. This temporal sampling approach is prone to error,

since it may miss collisions that occur between sample instants. To this end, continuous

collision detection (CCD) is currently an active research direction, in which collision

status (i.e., either collision or collision-free) is guaranteed within a continuous time

span.

Schwarzer et al. [56] uses adaptive sampling which guarantees that all configurations

along a straight line segment connecting two configurations in the C-space are collision-

free, by considering also the distance information in the workspace. Based on this

technique, Ferré and Laumond [18] further developed a collision-free planar path

through an iterative process. There have also been attempts to use the speed of moving

objects as a bound to determine the safe time sampling resolution [8].

Redon et al. [50, 51, 52], Govindaraju et al. [22], and Kim et al. [32] consider CCD in

various simulation environments, comprising of hundreds of thousands of polygons as

obstacles and complex moving objects composed of articulated links. They develop effi-
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cient algorithms of interactive speed for CCD while employing effective computational

tools for culling redundant geometry at various stages of computation. Redon et al. [50]

use Oriented Bounding Box (OBB) as the basic bounding volume, whereas Redon et

al. [51, 52] and Kim et al. [32] employ Line Swept Sphere (LSS). These methods take

geometric approaches in culling redundant geometry. In particular, Redon et al. [51, 52]

and Kim et al. [32] apply a GPU-based collision detection to the swept volumes of

LSS primitives against the environment; moreover, Govindaraju et al. [22] present a

GPU-based algorithm that can also deal with deformable models. Zhang et al. [76],

on the other hand, deals with the CCD of articulated models with the approach of

conservative advancement that repeatedly moves objects by a computed time step

while ensuring non-collision. Significant performance gain is achieved by using Taylor

models to construct dynamic bounding volume hierarchies of the articulated models.

1.4 collision detection of conics in the plane

Many collision detection algorithms are catered for 3D applications (see the surveys [27,

38]); however, there are numerous other applications in which objects only move in the

plane. Examples are robot or vehicle path planning, where the robots or vehicles are

represented by 2D figures and move in the 2D plane, but the robots may follow any

paths and make arbitrary motions.

Even in a 2D setting, the outline of an object can be quite complicated. As in the

3D case, it is common to enclose objects by simple geometric entities, called bounding

objects for fast and preliminary collision tests. Commonly used bounding objects in the

plane include circular disks and rectangles.

Considering the criteria for bounding objects as described in Section 1.1 above, it is

not hard to understand why circular discs are commonly used as bounding objects for

robots in the plane (e.g. [46])—collision detection between a pair of circles is almost

trivial, and can therefore be performed very efficiently. Interference testing of multiple

circular discs has also been studied intensively in computational geometry [49, 59, 60].

(Spheres are popular bounding objects in the 3D case, for similar reasons.)
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Ellipses provide much tighter bounding than circles. When ellipses or circles are

used as bounding objects, far fewer ellipses than circles are normally needed to enclose

a given object with the same degree of tightness. Therefore the use of ellipses as

bounding objects can potentially lead to significant improvement in the accuracy and

efficiency of collision detection. However, relatively little work can be found in the

literature on the use of ellipses as bounding objects, largely because of the lack of

effective means of collision detection for ellipses.

1.5 ccd of quadrics

Regardless of all the advantages and popularity of using quadrics in various appli-

cations as we have seen, real-time CCD of quadrics has not been addressed in the

literature. Thorough analysis and classification of intersection of general quadrics can

be found in classical algebraic geometry e.g. [4, 7, 58]. and CAGD [69]. The Segre

characteristics, defined by the elementary divisors of the matrix λA + B, are used in

algebraic geometry [7, 63] to classify a degenerate intersection curve between two

quadric surfaces in complex projective space. Similar work in real projective space is

presented by Tu et al. [65]. These results, however, consider quadrics in the complex

(projective, affine or Euclidean) space, and are not applicable to the collision detection

problem, for which the analysis must be done in the real affine domain: two quadric

surfaces always intersect in complex projective space, but this does not mean that

they share any common points in real affine space. There is nevertheless an obvious

way to detect intersection between stationary quadrics, which is to compute their real

intersection curves. Various algorithms have also been studied in CAGD for computing

the intersection curve of two quadric surfaces (e.g. [36, 41, 71, 72, 74]). The objectives of

these algorithms are to classify the topological or geometric structure of the intersection

curve and to derive its parametric representation; efficient collision detection is not

their primary purpose. Moreover, these methods are difficult to extend to deal with

moving quadrics.

Because swept volumes and distances (which are the common approach to solving

CCD) are difficult to compute for quadrics, an algebraic approach seems more suit-
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able for the CCD of quadrics. Research in surface-surface-intersection of quadrics,

which is closely related to the problem of collision detection, also suggests that the

algebraic treatment is a natural approach for quadric surfaces—geometric approaches

usually produce efficient intersection algorithms only for a limited class of simple

quadrics, called natural quadrics (i.e., spheres, circular cylinders and cones) [31, 42],

while algebraic techniques are capable of handling general quadrics [65, 71, 72].

1.6 contributions

This thesis is a collection of work focuses on the study of continuous collision detection

of quadric surfaces. We aim to produce efficient and exact collision detection results,

which are much desired in many applications where accurate shape is encoded more

efficiently using quadric surfaces than using piecewise linear representation. Our

approach is algebraic, therefore it requires neither geometric approximation of curved

boundary surfaces nor discrete sampling of motion time interval, which are the main

sources of inefficiency and inaccuracy of the conventional collision detection paradigm.

We develop an efficient and robust algebraic or numerical solution that achieves real-

time performance. Our algebraic approach leads to accurate solutions to the CCD

problem for moving quadric surfaces under rational Euclidean or affine motions. In

particular, we highlight the following contributions:

• We establish a simple condition for checking the separation of two ellipses in the

real plane based on the number of the real roots of their characteristic equation,

and apply it to collision detection of two moving ellipses (Chapter 2).

• We reduce CCD of ellipses moving in 3D to a 1D collision detection problem in a

line, which is based on a thorough algebraic analysis (Chapter 3).

• Based on the separation condition for two static ellipsoids, we devise an optimized

collision detection algorithm with a minimal number of arithmetic operations

(Chapter 4).

• For ellipsoids moving with on-the-fly motions, we establish a simple method to

construct a separating plane for two disjoint ellipsoids, and further develop a

7



collision detection algorithm exploiting inter-frame coherence of the ellipsoids

using separating planes (Chapter 4).

• When the motion of the ellipsoids are pre-specified, we formulate the CCD

problem algebraically in terms of a bivariate function, which is then solved using

an efficient and robust numerical scheme (Chapter 5).

• Due to the projective invariant properties of our formulation, the above CCD

methods for ellipses and ellipsoids can be extended readily to other conics and

quadrics. A procedure is therefore devised to handle CCD of Composite Quadrics

Models whose boundary are made up of piecewise conics edges or quadrics

surface elements (Chapter 6).

• Our algorithms work not only for Euclidean motions but also for affine motions,

meaning that the moving objects may change their shapes under affine transfor-

mations. This facility can be a potential advantage over the traditional methods

when adapting our method to collision detection for deformable moving objects,

such as human or animal bodies.
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2
E L L I P S E S M O V I N G I N T H E P L A N E

We shall present in this chapter a fast and accurate algorithm for continuous collision

detection between two moving ellipses in the plane. We introduce new conditions

on the separation of two ellipses to reduce the collision detection problem to the

problem of detecting a real zero of a univariate function which is the discriminant

of the characteristic polynomial of the two ellipses. If the ellipses serve as bounding

objects, the colliding time intervals computed by our method can then be used as a

refined time span to which other algorithms for collision detection on the exact objects

may be applied.

Our method is based on theoretical results similar to those of Wang et al. in [70]

concerning the separation of two stationary ellipsoids in 3D space, but there are impor-

tant differences between these results for ellipses and ellipsoids. First, the separation

condition for two stationary ellipses cannot be derived as a special case of the result [70]

for two stationary ellipsoids, although the former is a low-dimensional counterpart

of the latter. Therefore, here we shall prove for the first time an algebraic condition

on the separation of two stationary ellipses. Second, compared with ellipsoids, the

characteristic polynomial of two ellipses has relatively simple properties, and this

simplicity allows us to reduce collision detection in the moving case to a problem of

detecting the zero of a univariate function. In general, such a treatment is not possible

for two moving ellipsoids, at least not in the same straightforward manner, as will be

discussed in detail later in Chapter 5.

The contributions of the work in this chapter is summarized as follows:
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1. A simple algebraic condition is established for the separation of two stationary

ellipses.

2. An algebraic condition is established for detecting collisions between two moving

ellipses.

3. An algorithmic framework for fast and accurate collision detection between two

moving ellipses. We discuss in detail two classes of commonly used motions:

cycloidal motions and rational motions. We also present robust methods for

processing high-degree polynomials arising from the use of rational motions,

which contribute to reliable collision detection.

2.1 condition on separation of two ellipses

In this section we are going to prove the separation condition for two stationary ellipses.

An ellipse is a conic section curve, and can be represented in the Euclidean plane

E2 by XT AX = 0, where A = [ai,j] is a 3× 3 real symmetric matrix, and X is a 3D

column vector containing the homogeneous coordinates of a point in E2. Let Ai,i

denote the leading submatrix of size i× i of A, i = 1, 2, 3. For an ellipse XT AX = 0

we shall assume throughout that the matrix A is normalized such that X̄T AX̄ < 0

for any interior point X̄ of the ellipse. Then, by elementary geometry, an ellipse

XT AX = 0 is characterized by the conditions that det(A1,1) = a1,1 > 0, det(A2,2) > 0,

and det(A3,3) < 0. Thus, A2,2 is positive definite.

An elliptic disk A is defined by A ≡ {X|XT AX ≤ 0} ⊂ E2. We use ∂A to denote

the boundary curve of A, i.e. the set of point satisfying XT AX = 0, and use Int(A) to

denote the interior points of A. Thus, A = ∂A∪ Int(A). For brevity, we will use the

terms ellipse and elliptic disk interchangeably when there is no danger of confusion.

Two elliptic disks A : XT AX ≤ 0 and B : XT BX ≤ 0 are said to be separate or disjoint

if A⋂B = ∅. The disks A and B are said to be overlapping if Int(A)
⋂

Int(B) 6= ∅;

and they are said to be touching if A⋂B 6= ∅ and Int(A)
⋂

Int(B) = ∅ (see Fig. 3).

Given two elliptic disks A : XT AX ≤ 0 and B : XT BX ≤ 0, the cubic polynomial

f(λ) = det(λA− B) is called the characteristic polynomial and f(λ) = 0 the characteristic

equation of A and B.

10



Figure 3: Two elliptic disks A and B are (a) separate; (b) overlapping; and (c) touching.

Note that λA− B represents the pencil of the two conics A and B, which contains

at most three singular conics (if not consists exclusively of singular conics) given by

λ0 A− B where λ0 is a root of f(λ) [37].

Lemma 2.1. For any two elliptic disks A : XT AX ≤ 0 and B : XT BX ≤ 0, the root pattern

of f(λ) = 0 falls into one of the following three cases:

1. three positive roots; or

2. one positive and two negative roots; or

3. one positive and a pair of complex conjugate roots.

Proof. Suppose

f(λ) = a3λ3 + a2λ2 + a1λ + a0.

Then a3 = det(A) < 0 and a0 = −det(B) > 0. It follows that f(0) > 0 and f(+∞) < 0.

Hence, f(λ) = 0 has at least one positive root. Moreover, since a3 6= 0 and a0 6= 0, it is

clear that 0 or ∞ cannot be a root of f(λ) = 0. Let λ0 > 0, λ1 and λ2 denote the three

roots. Since λ0λ1λ2 = −a0/a3 > 0, we have λ1λ2 > 0. Hence the other two roots λ1

and λ2 must both be positive, both negative, or a pair of complex conjugates.

Lemma 2.2. If Int(A)
⋂

Int(B) = ∅, then f(λ) = 0 has a negative root.

Proof. Since Int(A)
⋂

Int(B) = ∅, we may suppose that A and B are either separate or

touching externally. We make the substitution λ = (µ− 1)/µ, which maps µ ∈ [0, 1]

to λ ∈ (−∞, 0], and transforms the characteristic equation f(λ) = det(λA− B) = 0

to g(µ) ≡ det((1− µ)A + µB) = 0. We will denote Q(µ) ≡ (1− µ)A + µB, observing

11



that Q(0) = A and Q(1) = B. Clearly, f(λ) = 0 has a finite negative root if and only if

g(µ) = 0 has a real root in (0, 1). We shall now show by contradiction that g(µ) = 0

has a real root in (0, 1).

Assume that g(µ) = 0 has no real root in (0, 1). Since g(µ) ≡ det((1− µ)A + µB) is

a continuous function of µ, and g(0) = det(A) < 0, we have g(µ) = det((1− µ)A +

µB) < 0 for all µ ∈ [0, 1]. (Recall that g(1) = det(B) 6= 0.) Clearly, det(Q(µ)1,1) =

(1− µ)a1,1 + µb1,1 > 0 for all µ ∈ [0, 1], since A1,1 > 0 and B1,1 > 0; furthermore,

Q(µ)2,2 = (1− µ)A2,2 + µB2,2 is positive definite for any µ ∈ [0, 1], since A2,2 and B2,2

are positive definite. Thus det(Q(µ)2,2) > 0 for all µ ∈ [0, 1]. Hence, XTQ(µ)X = 0 is

an ellipse for all µ ∈ [0, 1], with its center at R(µ) = Q(µ)−1[0, 0, 1]T .

Let us denote p(µ) ≡ R(µ)T AR(µ). Then p(µ) is a continuous function of µ in [0, 1].

Clearly, R(0) ∈ Int(A), since R(0) is the center of A. We have R(1) 6∈ A since R(1) is

the center of B and Int(A)
⋂

Int(B) = ∅, which is the hypothesis of the lemma. Hence,

p(0) = R(0)T AR(0) < 0 and p(1) = R(1)T AR(1) > 0. By a continuity argument, it

follows that p(µ1) = 0 for some µ1 ∈ [0, 1], i.e. the center R(µ1) of the ellipse Q(µ1)

is on the boundary of the elliptic disk A (see Fig. 4). We then define a circular disk

D centered at R(µ1) which is contained in Q(µ1), i.e. D ⊂ Q(µ1). Note that R(µ1)

may or may not be the tangent point of A and B, since A and B are either separate

or touching externally. If R(µ1) is not the tangent point, D can be made sufficiently

small such that D ∩ B = ∅. In any case, the tangent of A at R(µ1) (also the common

tangent of A and B at R(µ1), if R(µ1) is the tangent point) gives a diameter of the disk

D. We may then choose a point X1 on this diameter, except for R(µ1), such that X1

is interior to Q(µ1), but is exterior to both A and B. Hence we have XT
1 Q(µ1)X1 < 0,

XT
1 AX1 > 0, and XT

1 BX1 > 0. Since µ1 ∈ (0, 1), it follows that

XT
1 Q(µ1)X1 = (1− µ1)XT

1 AX1 + µ1XT
1 BX1 > 0.

This is a contradiction. Hence, g(µ) has a real zero in (0, 1).

Lemma 2.3. If Int(A)
⋂

Int(B) 6= ∅, then any real root of f(λ) = 0 is positive.

Proof. The proof goes by contradiction. Let λ0 be a real root of f(λ) = 0. Assume

λ0 ≤ 0 and denote Q0 = λ0 A− B. Then there exists a real point X0 such that Q0X0 = 0,
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Figure 4: Configuration for Lemma 2.2.

because Q0 is singular. Since Int(A)
⋂

Int(B) 6= ∅, let X1( 6= X0) denote a common

interior point of A and B, i.e. XT
1 AX1 < 0 and XT

1 BX1 < 0 (Fig. 5). Then

XT
1 Q0X1 = λ0XT

1 AX1 − XT
1 BX1 > 0.

Let L denote the line passing through X0 and X1. Then, since A and B are bounded,

there exists on the line L a point X̃ far enough from A and B such that X̃ is exterior to

both A and B. Let us write X̃ = αX0 + βX1, where α and β are real constants that are

not both zero. Then X̃T AX̃ > 0 and X̃T BX̃ > 0. It follows that

X̃TQ0X̃ = λ0X̃T AX̃− X̃T BX̃ < 0.

On the other hand, since Q0X0 = 0 and XT
1 Q0X1 > 0, we have

X̃TQ0X̃ = α2XT
0 Q0X0 + 2αβXT

1 Q0X0 + β2XT
1 Q0X1

= β2XT
1 Q0X1 ≥ 0.

This is a contradiction. Hence, any real root λ0 of f(λ) = 0 is positive.

Figure 5: Configuration for Lemma 2.3.

Lemma 2.4. If two elliptic disks A : XT AX ≤ 0 and B : XT BX ≤ 0 touch externally, then

f(λ) = 0 has a negative double root.
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Proof. Suppose that A and B do touch externally. As a result, the two ellipses XT AX =

0 and XT BX = 0 will have a multiple intersection. Then f(λ) = 0 has a multiple root

λ0 [37, page 256]. Since Int(A)
⋂

Int(B) = ∅, by Lemma 2.2, f(λ) = 0 has a negative

root λ1. Moreover, by Lemma 2.1, f(λ) = 0 has a positive root λ2. Thus, we have either

λ0 = λ1 < 0 or λ0 = λ2 > 0. Again by Lemma 2.1, only the first case is possible.

Hence f(λ) = 0 has a negative double root.

Lemma 2.5. If f(λ) = 0 has a negative double root, then the elliptic disks A : XT AX ≤ 0

and B : XT BX ≤ 0 touch each other externally. Moreover, the real touching point X0 is the

unique solution to (λ0 A− B)X = 0, where λ0 is the negative double root of f(λ) = 0.

Proof. Let λ0 < 0 be a negative double root of f(λ) = 0. Clearly, λ0 is not a zero of the

first 2× 2 minors det(λA2,2− B2,2), because both A2,2 and B2,2 are positive definite and

thus the two zeros of det(λA2,2 − B2,2) are positive. It follows that rank(λ0 A− B) = 2

and its null space, Ker[λ0 A− B], has dimension 1.

Since det(λA− B) = 0 has a double root λ0, the pencil XT(λA− B)X = 0 contains

the singular conic λ0 A− B with multiplicity 2. In this case, the two ellipses XT AX = 0

and XT BX = 0 are tangential to each other at the singular point X0 of the conic

XT(λ0 A− B)X = 0, that is, (λ0 A− B)X0 = 0 (see [4]).

We are now going to show that X0 is a real tangent point of A and B. Let us

suppose that X0 = U ± iV 6= 0, where U and V are real homogeneous vectors which

are not both zero; without loss of generality, we suppose that U 6= 0. Then, from

(λ0 A− B)(U ± iV) = 0, it follows that (λ0 A− B)U = 0 and (λ0 A− B)V = 0. This

means that U and V are both real solutions of (λ0 A− B)X = 0. Hence U and V are

linearly dependent, or V = αU for some constant α, since Ker[λ0 A− B] has dimension

1. It follows that X0 = (1 + iα)U is a real point, since U stands for a real point and

the multiplicative constant (1 + iα) can be ignored in a homogeneous representation.

Hence, the elliptic disks A and B touch each other externally at the real point X0.

Lemma 2.5 also suggests a convenient means to compute the contact point of two

externally touching ellipses, which will be used to find the first contact point of two

moving ellipses in subsequent sections.

14



The following theorem gives a condition on the separation of two elliptic disks,

which is the main result of this section. Fig. 6 illustrates the relationship between two

ellipses and the root pattern of their characteristic polynomial.

Theorem 2.6. Given two ellipses A : XT AX = 0 and B : XT BX = 0,

1. A and B touch externally if and only if f(λ) = 0 has a negative double root;

2. A and B are separate if and only if f(λ) = 0 has two distinct negative roots.

Proof. Part (1) follows from Lemma 2.4 and Lemma 2.5. For part (2), the sufficiency

follows from Lemma 2.3 and Lemma 2.4, and the necessity follows from Lemma 2.2

and Lemma 2.5.

touchingoverlapping separate

Figure 6: Two elliptic disks and their characteristic polynomial f(λ). Left: Overlapping
if and only if f(λ) = 0 has no negative root. Middle: Touching externally if
and only if f(λ) = 0 has a double negative root. Right: Separate if and only if
f(λ) = 0 has two distinct negative roots.

Remark 2.7. The application of the above conditions to detecting the overlapping of two

stationary ellipses is rather straightforward. A description of the resulting algorithm

will be discussed in Section 2.3 as the first step of our complete algorithm for moving

ellipses. Note that a quick and exact test for overlap between two stationary ellipses

should be of interest in its own right in some applications.

The next corollary, following from Theorem 2.6(2) and Lemma 2.1, is a key property

that enables us to detect collisions between two moving elliptic disks A(t) and B(t) by

the occurrence of a double root of f(λ; t) = 0, as will be seen in the next section.
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Corollary 2.8. Suppose that two elliptic disks A : XT AX ≤ 0 and B : XT BX ≤ 0 are

separate. Then f(λ) = 0 does not have any multiple root.

2.2 separation condition for two moving elliptic disks

In this section we are going to establish a condition for detecting a collision between

two moving elliptic disks. Consider two elliptic disks A(t) : XT A(t)X ≤ 0 and B(t) :

XT B(t)X ≤ 0 making continuous motions MA(t) and MB(t), t ∈ [0, 1] respectively.

The disks A(t) and B(t) are said to be collision-free if A(t) and B(t) are separate for all

t ∈ [0, 1]. Otherwise, A(t) and B(t) collide: i.e. A(t) and B(t) are either touching or

overlapping for some t ∈ [0, 1].

The characteristic polynomial of A(t) and B(t), t ∈ [0, 1], is

f(λ; t) = det(λA(t)− B(t)),

and we can write

f(λ; t) = g3(t)λ3 + g2(t)λ2 + g1(t)λ + g0(t). (2.1)

The discriminant of f(λ; t) with respect to λ, as a function of t, is

∆(t) = 18g3g2g1g0 − 4g3
2g0 + g2

2g2
1 − 4g3g3

1 − 27g2
3g2

0 (2.2)

(see [11]). By definition, f(λ; t) = 0 has a multiple root in λ for some t if and only if

∆(t) = 0. Furthermore, it can be shown that f(λ; t) = 0 has three simple real roots if

∆(t) > 0, and f(λ; t) = 0 has two complex conjugate roots and a real root if ∆(t) < 0.

The next theorem states the condition that two moving elliptic disks are collision-free.

Theorem 2.9. Let A(t) and B(t), t ∈ [0, 1], be two moving elliptic disks in E2. Let f(λ; t) be

their characteristic polynomial. Let ∆(t) denote the discriminant of f(λ; t) with respect to λ.

Suppose that A(0) and B(0) are separate. Then A(t) and B(t) are collision-free if and only if

∆(t) has no real zero in [0, 1].
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Proof. First we prove necessity. Suppose that A(t) and B(t) are collision-free. Then by

Corollary 2.8, f(λ; t) = 0 does not have a multiple root in λ for any t ∈ [0, 1]. Therefore,

∆(t) does not have any real zero in [0, 1].

To prove sufficiency, suppose that ∆(t) = 0 has no real root in [0, 1]. Now assume

that A(t) and B(t) collide. Then A(t0) and B(t0) are overlapping or touching for some

t0 ∈ [0, 1]. Since A(0) and B(0) are separate, by a continuity argument, there exists an

instant t1 ∈ (0, t0] ⊂ [0, 1] at which A(t1) and B(t1) touch each other externally. Then,

by Theorem 2.6, f(λ; t1) = 0 has a negative double root in λ. Therefore ∆(t1) = 0. But

this contradicts the condition that ∆(t) has no zero in [0, 1]. Hence, A(t) and B(t) are

collision-free.

Corollary 2.10. Let A(t) and B(t), t ∈ [0, 1], be two moving elliptic disks. Suppose that

A(0) and B(0) are separate. If ∆(t) has a real zero in [0, 1], then A(t) and B(t) touch each

other externally at tmin ∈ [0, 1], where tmin is the smallest real zero of ∆(t) in [0, 1]: i.e.

tmin = min{t|∆(t) = 0, t ∈ [0, 1]}.

The proof of Corollary 2.10 is similar to the proof of necessity in Theorem 2.9, and is

therefore omitted. Here tmin gives the time of first contact between the disks A(t) and

B(t).

2.3 outline of algorithm

Based on the separation conditions proved in the preceding sections, in this section

we shall outline the framework of our algorithm for collision detection between two

moving ellipses.

Algorithm: CD-DISC

Input: The matrices A(t) and B(t) of two moving elliptic disks A(t) and B(t).

Output: Whether the two elliptic disks collide: collision or collision-free.

Step 1: Compute the characteristic equation f(λ; 0) = 0 for A(0) and B(0). Then

determine whether f(λ; 0) = 0 has two distinct negative roots.

If yes, by Theorem 2.6, A(0) and B(0) are separate, and go to Step 2; otherwise,

report collision and exit.

17



Step 2: Compute the characteristic polynomial

f(λ; t) = det(λA(t)− B(t)).

Step 3: Compute the discriminant ∆(t) of f(λ; t) with respect to λ.

Step 4: Determine whether ∆(t) = 0 has any real root in [0, 1].

If yes, by Theorem 2.9, report collision and exit; otherwise, again by Theorem

2.9, report collision-free and exit.

In Step 1 of the algorithm CD-DISC, we use the Sturm sequence method [11, page

96], a classical real root isolation method, to check whether or not f(λ; 0) = 0 has two

distinct negative roots. By Theorem 2.6, this can determine whether or not the two

ellipses are separate at t = 0. The Sturm sequence method counts the number of real

zeros of a polynomial within a specified interval by taking the difference between the

numbers of sign changes exhibited by the Sturm sequence of the polynomial at the

two ends of the interval (a multiple real root is counted once only). When applying

the Sturm sequence method to f(λ; 0) over the interval (−∞, 0), Lemma 2.1 ensures

that the number of zeros can only be 0, 1, or 2, corresponding to situations in which

whether f(λ; 0) = 0 has no negative root, one negative double root, or two distinct

negative roots, respectively.

The algorithm CD-DISC only reports whether the two moving ellipses collide. By

solving for the roots of ∆(t), this algorithm can be extended to report also the time of

first contact, or all instants at which the ellipses are in external contact. By Corollary

2.10, the smallest root tmin of ∆(t) = 0 in [0, 1] is always the instant of first contact

between the two disks. However, to report all contact instants, the other roots of

∆(t) = 0 in [0, 1] need to be checked because, while all contact instants must be roots

of ∆(t) = 0, a root of ∆(t) = 0 may not correspond to an external contact between

the disks. We will discuss more about this in Section 2.5.2. For each external contact

time instant ti, the corresponding touching point of the two ellipses can be obtained by

finding the unique solution to (λi A(ti)− B(ti))X = 0, where λi is the negative double

root of f(λ; ti) = 0 (Lemma 2.5). Implementation of the algorithm CD-DISC, with

various enhancements for different types of motions and outputs, will be discussed in

the following sections.
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2.4 non-rational motions

In the algorithm CD-DISC, it is necessary at least to detect the real roots of the

univariate equation ∆(t) = 0. When the motions of the ellipses are analytical but

otherwise arbitrary, ∆(t) = 0 is a rather general equation, and appropriate root-finding

techniques need to be used. If the motions are piecewise analytical, then the algorithm

can be applied to each piece. In the rest of the discussion we shall consider some

special types of motion that are frequently encountered and which allow relatively

easy formulation or efficient handling. In particular, we will consider the cycloidal

motion in this section, and the rational motion in the next section.

The cycloidal motion is commonly used in cam design. An object with a cycloidal

motion has the trajectories of all of its points being cycloids. The simplest cycloidal

motion is a circle rolling along a straight line. We shall consider ellipses making

cycloidal motions, such that they translate with constant velocities and, at the same

time, rotate about their centers with a constant angular velocity. In this case, the

elements of the motion matrix M(t) contain not only rational functions of time t, but

also trigonometric terms such as cos(γ0t + ϕ0) and sin(γ1t + ϕ1), for some constants

γ0, γ1, ϕ0 and ϕ1. Therefore, the coefficients gi(t) of the characteristic polynomial

in (2.1) are not rational functions in t. It might be suggested that the trigonometric

functions could be converted into rational functions using the variable substitution

u = tan(t/2). However, this substitution would make the translational part, which

is linear in t, non-rational. In fact, this kind of motion is intrinsically transcendental;

hence, it can only be approximated, but not exactly represented, by a rational motion.

Suppose that two elliptic disks A and B perform cycloidal motions. Since the

sizes and shapes of the disks do not change during the motion, the coefficients g3(t)

and g0(t) of (2.1) are constant and equal to det(A) and −det(B) respectively. Let

u = (1− t)θ0 + tθ1 and v = (1− t)φ0 + tφ1 be linear interpolations of the initial and
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final orientation angles θ0, θ1 of A and φ0, φ1 of B. Then the other two coefficients

g2(t) and g1(t) can be expressed as

g2(t) = (α22 cos(2v) + α21 sin(2v) + α20)t2

+ (α12 cos(2v) + α11 sin(2v) + α10)t

+ α03 cos(2(u− v)) + α02 cos(2v) + α01 sin(2v) + α00

and

g1(t) = (β22 cos(2u) + β21 sin(2u) + β20)t2

+ (β12 cos(2u) + β11 sin(2u) + β10)t

+ β03 cos(2(u− v)) + β02 cos(2u) + β01 sin(2u) + β00,

where the α and β terms are all constants.

Since the coefficients gi(t) are not rational, neither is the discriminant ∆(t) for a

cycloidal motion. One may use any suitable numerical solver to compute the roots of

∆(t) = 0 or to check for the existence of any real roots. The example below illustrates

the steps of the algorithm CD-DISC for two ellipses making cycloidal motions.

Example 2.1. Consider two elliptic disks A : x2

62 + y2

102 ≤ 1 and B : x2

142 + y2

42 ≤ 1. Two

moving elliptic disks A(t) and B(t), t ∈ [0, 1], are defined by the transformation of A

and B under the following cycloidal motions:

MA =



cos( 10πt
9 ) − sin( 10πt

9 ) 115t− 80

sin( 10πt
9 ) cos( 10πt

9 ) 55t− 38

0 0 1


, and

MB =



cos( 2πt
3 ) − sin( 2πt

3 ) 76t− 60

sin( 2πt
3 ) cos( 2πt

3 ) 97t− 57

0 0 1


.
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The characteristic polynomial is

f(λ; t) = det(λA(t)− B(t))

= − 1
3600 λ3 +

(
(− 243

125440 cos( 4πt
3 )− 117

4480 sin( 4πt
3 )− 3869

125440 )t2

+ ( 9
31360 cos( 4πt

2 ) + 1581
62720 sin( 4πt

3 ) + 13939
470400 )t + 1

1960 cos( 8πt
9 )

+ 39
125440 cos( 4πt

3 )− 19
3136 sin( 4πt

3 )− 10519
1881600

)
λ2

+
(
(− 27

39200 cos( 20πt
9 )− 13

1400 sin( 20πt
9 ) + 1241

62720 )t2 + ( 1
9800 cos( 20πt

9 )

+ 527
58800 sin( 20πt

9 )− 4471
235200 )t− 1

1960 cos( 8πt
9 ) + 13

117600 cos( 20πt
9 )

− 19
8820 sin( 20πt

9 ) + 937
313600

)
λ + 1

3136 .

The discriminant ∆(t) has a long expression, and is therefore omitted.

The disks A(t) and B(t), moving from left to right, and the graph of their discrimi-

nant are shown in Fig. 7. Using Maple, with floating-point computations to 12 decimal

places, the roots are found at t = 0.226, 0.393, 0.600 and 0.731. Therefore, the two

ellipses collide during the cycloidal motion and the first contact is at time t = 0.226 and

the contact point is found to be at (−47.605,−33.162)T . Furthermore, only t = 0.731

corresponds to another external touching of the two ellipses and the contact point is

(−2.469, 2.723)T . Comparing with the results obtained by Maple integer arithmetics

(except for the last step of root solving using floating point computations), the accuracy

of the roots found above is up to 9 decimal places.

2.5 rational motions

Studies on rational motions [24, 29, 30, 54], and in particular, on planar rational

motions [68], have shown that low-degree rational motions are adequate to meet

the need for motion design and representation in robotics and CAD/CAM. The use

of rational motions also allows effective computation, using various well-developed

techniques for processing polynomials. In this section we shall study in detail the

application of our method to collision detection between two elliptic disks making

rational motions, with particular emphasis on rational Euclidean motions. The resulting
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Figure 7: The two moving ellipses of Example 1, progressing from left to right, and the
discriminant ∆(t).

algorithms are also applicable to affine motions that produce continuous deformation

of the objects, an effect often required in computer animation.

2.5.1 Planar rational Euclidean motions

We start with a brief review of planar rational Euclidean motions. A Euclidean

transformation in E2 is given by X′ = MX, where

M = ρ

 R V

0T 1


for some nonzero constant ρ, and X, X′ are points in E2 in homogeneous coordinates.

The rotational part of the transformation is described by the 2× 2 orthogonal matrix R

and the translational part by the vector V. If the elements of R and V are continuous

functions of t, then M describes a transformation over time and can therefore be

denoted by M(t). In particular, if the elements of M(t) are rational functions and R is

orthogonal for all t, then M(t) is called a rational Euclidean motion whose degree is the

maximal degree of its elements. (Note that M(t) represents an affine motion only if

R(t) is non-singular.)
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One way to construct a rational Euclidean motion is to use the kinematic mapping

that associates the Euclidean transformation M with a point d in P3, the 3D real

projective space, as described in [68]. If we write

R =

 cos φ − sin φ

sin φ cos φ

 and V =

 vx

vy

 ,

then the kinematic image d ∈ P3 of M is given by

d =



d0

d1

d2

d3


=



vx sin(φ/2)− vy cos(φ/2)

vx cos(φ/2) + vy sin(φ/2)

−2 cos(φ/2)

2 sin(φ/2)


.

Conversely, any point d in P3 at which d2
2 + d2

3 6= 0 corresponds to a Euclidean

transformation M in E2, given by

M =


d2

2 − d2
3 2d2d3 2(d0d3 − d1d2)

−2d2d3 d2
2 − d2

3 2(d0d2 + d1d3)

0 0 d2
2 + d2

3

 . (2.3)

It follows that there is a one-to-one correspondence between a Euclidean transformation

in E2 and a point in the kinematic image space, which is P3 with the line d2 =

d3 = 0 removed. Due to this correspondence by means of a kinematic mapping,

we may construct a polynomial curve in the kinematic image space and then obtain

the corresponding rational Euclidean motion in E2. In general, if the di terms are

polynomials of degree n, the resulting motion will be of degree 2n. A C2 interpolation

scheme of a set of given positions in E2 with piecewise quartic B-spline rational

motions can be found [68]. Another advantage of rational motions is that they permit

an algebraic treatment of the collision detection problem.

When applying a rational motion M(t) to an ellipse A : XT AX = 0, we get a moving

ellipse A(t) : XT A(t)X = 0 where

A(t) = (M−1(t))T AM−1(t).
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Inverting (2.3), we have

M−1 =


d2

2 − d2
3 −2d2d3 2(d1d2 + d0d3)

2d2d3 d2
2 − d2

3 2(d1d3 − d0d2)

0 0 d2
2 + d2

3

 .

Therefore the maximal degree of the entries in A(t) is 2k, if the degree of the motion

M(t) is k.

2.5.2 Properties of ∆(t)

We now analyze the degree of the discriminant ∆(t). The characteristic equation

f(λ; t) = 0 of the two moving elliptic disks A(t) and B(t) is cubic in λ, and its degree

in t depends on the degree of the rational motions of the two disks. Suppose that

the motions MA(t) and MB(t) both have degree k. Then the maximum degree of the

elements of λA(t)− B(t) is 2k, and the maximum degree of the coefficients gi(t) of

the characteristic equation is 6k. Hence, from (2.2), the maximum degree of ∆(t) is

24k. This analysis only gives an upper bound of the degree of ∆(t), because the actual

degree of ∆(t) depends on the specific motions that are used. For example, consider a

linear translational motion

M(t) =

 R(t) V(t)

0T 1

 ,

where the entries in R(t) are all constants and those in V(t) are linear polynomials.

Then, the degree of g0 and of g3 is 0 while that of g1 and of g2 is 2. Therefore the

degree of ∆(t) is only 8, which is much lower than 24, which is the degree that could

be deduced from the general analysis. The relationship between the degree of ∆(t)

and the degree of the rational motions is summarized in Table 1.

Now let us consider the geometric meaning of the roots of ∆(t). If two ellipses A(t0)

and B(t0) touch each other externally, by Theorem 2.6, f(λ, t0) = 0 has a negative

double root, and we have ∆(t0) = 0. However, when ∆(t̃) = 0 for some t̃, the disks

A(t̃) and B(t̃) do not necessarily touch each other.
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Table 1: Degrees of various entities for rational motions of different degrees. The last
row shows the maximum degrees of the entities for a general motion of degree
k. The motion M(t) takes the form of equation (2.3)

Degree in t

Motion Type M(t) gi(t) ∆(t)

Linear Translation 1 0 (g0,g3), 2(g1,g2) 8

General Motion k 6k 24k

Fig. 8 shows two elliptic disks moving with linear translational motions and the

graph of their discriminant. Here, A(0) and B(0) are separate. Note that the first real

Figure 8: Two elliptic disks with translational motions, and their corresponding dis-
criminant function.

root t1 of ∆(t) = 0 corresponds to an external contact between A(t) and B(t), while

the next two roots, t2 and t3, are caused by internal tangency of the two disks.

Since the degree of ∆(t) is 8 in the case of a linear translational motion, ∆(t) = 0 can

have eight real roots at most. Fig. 9 illustrates a case where all these eight real roots

are accounted for by real tangencies between two elliptic disks during linear motions.

Here, there are two instants (t2 and t3) when the two disks are internally tangential to

each other simultaneously at two points; t2 and t3 are double zeros of ∆(t) = 0.
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Figure 9: The eight real roots of ∆(t) = 0 for a translational motion, and the corre-
sponding contact points between the two elliptic disks. Note the double roots
at t2 and t3.

We have mentioned that a real zero of ∆(t) = 0 may not correspond to any real

tangency between the two ellipses. To see this, consider two moving circular disks

that become two concentric circles x2 + y2 = 1 and x2 + y2 = 4 at time t0. It is easy

to verify that the characteristic equation f(λ; t0) = 0 has a positive double root and

therefore ∆(t0) = 0. But the two circles have no real touching point: the two circles

are tangential to each other at two complex conjugate points (1,±i, 0), known as the

circular points in projective geometry. This explains why only the first real root of ∆(t)

in t ∈ [0, 1] always indicates an external contact between two moving elliptic disks, as

assured by Corollary 2.10, on condition that the two elliptic disks are separate at the

beginning (i.e. when t = 0). For each of the other real roots t̄ of ∆(t) = 0, we need to

check the root pattern of the characteristic polynomial at time t̄ to see whether there

is an external contact. Theorem 2.6(1) tells us that a root t̄ of ∆(t) = 0 corresponds to

an external tangency of the two ellipses if and only if the characteristic polynomial

f(λ; t̄) = 0 has a negative double root in λ.

2.5.3 Robust computation

In this section, we shall discuss robust implementation of CD-DISC for testing collisions

between two elliptic disks moving with rational motions. One of the steps in CD-

DISC (see Section 2.3) is to construct the discriminant ∆(t). The discriminant is a

26



univariate polynomial in t that is the result of long polynomial computations (mainly

polynomial multiplications) from the coefficients of the motion matrices, which are also

polynomials. If the computations are carried out using the power series representation

of the polynomials (i.e. p(t) = ∑n
i=0 aiti, ai ∈ R), we found that CD-DISC suffered

severely from numerical instability when the degree of motion is higher than 2, using

double-precision floating-point arithmetic. By comparing intermediate results through

the entire process with exact results produced by a Maple implementation of the same

algorithm using exact integer computations, significant errors in the coefficients of

∆(t) are revealed. We perform a test, in which two elliptic disks move with degree 4

motion, using Maple with high-precision floating-point computation, and found that

acceptable results could only be obtained when the number of decimal places in the

floating point computation is increased above 20. In this case, the degree of ∆(t) is 96.

To overcome this numerical instability in processing high-degree polynomials, we

turned to the Bernstein form of polynomials. The Bernstein form has the expression

∑n
i=0 (n

i )aiti(1− t)n−i, ai ∈ R, and is known to be numerically more stable for polyno-

mial computations than the power form [17, 57]. In our current implementation of

CD-DISC, we still use polynomials in the power form when computing the character-

istic equation f(λ; t) = 0 from the motion matrices, and then convert the coefficients

gi(t) of f(λ; t) = 0 into the Bernstein form; the numerical condition of this conversion

is satisfactory since the terms gi(t) have relatively low degrees [16]. Finally, we derive

∆(t) by computing with polynomials in the Bernstein form. Our experiments show

that this adoption of the Bernstein form significantly improves the robustness and

accuracy of our collision detection procedure.

Having obtained the discriminant ∆(t) in a robust manner, the next step is to analyze

its zeros. The extent of processing of ∆(t) depends on what kind of collision detection

output is required by an application. The following three variants of CD-DISC have

been implemented that give different collision detection outputs for two elliptic disks

making rational motions:

Variant 1: reports whether the two elliptic disks collide.

Variant 2: reports whether the two elliptic disks collide and, if so, reports the time of

first contact.
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Variant 3: reports whether the two elliptic disks collide and, if so, reports all instants

of external contact.

These different output types require different ways of handling the discriminant

∆(t) = 0. For Variant 1, we only need to check for the existence of real roots of ∆(t) = 0.

We make use of a result that uses an idea similar to the Sturm sequence method to

count the number of real roots of a polynomial in the scaled Bernstein form [44], which

is expressed as ∑n
i=0 biti(1− t)n−i, where bi ∈ R. This method inherits the robustness

provided by the Bernstein form and therefore is suitable for high-degree polynomials.

Using this technique, we are able to determine robustly whether ∆(t) has any real roots

in the time interval t ∈ [0, 1]. Here, the coefficients gi(t) of the characteristic equation

f(λ; t) = 0 are first transformed to the scaled Bernstein form, and then ∆(t) is obtained

by computing with polynomials in the scaled Bernstein form. This treatment avoids

the errors that would otherwise be caused by the high degree of ∆(t), if ∆(t) were first

obtained in the Bernstein basis and then be transformed into the scaled Bernstein form.

The scaled Bernstein form is used only in Variant 1.

For Variant 2, we need to solve for the smallest real root of ∆(t) = 0 in [0, 1], if one

exists. For Variant 3, we must obtain all the real roots of ∆(t) = 0 in [0, 1]. For each

of these roots we also need to check for the existence of a negative double root of the

characteristic polynomial, in order to verify the external tangency of the two elliptic

disks. In both Variant 2 and Variant 3, we use the de Casteljau algorithm to subdivide

∆(t) in the Bernstein form to locate all real roots of ∆(t) in [0, 1]. Using the convex hull

property, we can discard an interval of t if the Bernstein coefficients of ∆(t) over that

interval are all positive or all negative. For Variant 2, in which only the first contact

time instant is needed, we can save computation time by continuing to subdivide only

those intervals within which the smallest real root might be contained.

2.5.4 Experimental results

We shall first use a large set of synthesized motions to demonstrate the efficiency

of our collision detection algorithm, and then use a more detailed example to show

its accuracy. We generated 2,000 test cases for each of four kinds of motion: linear
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Figure 10: Average CPU time needed for CD-DISC to detect collision for two moving
elliptic disks with different degrees of motion, when the two moving elliptic
disks collide (a) or are collision-free (b). The solid lines show the total
collision detection time for the three variants of CD-DISC (see Section 2.5.3)
and the dashed lines show the computation time taken for obtaining ∆(t) in
the Bernstein form and in the scaled Bernstein form.

translations and general rational motions of degree 2, degree 4 and degree 6. In each

set of 2,000 cases, 1,000 cases were randomly generated pairs of colliding elliptic disks,

and the other 1,000 were randomly generated pairs of collision-free elliptic disks. The

experiments were run on a PC with a 2.2GHz Intel CPU and the timings are shown

in Fig. 10. The graphs in Fig. 10(a) and Fig. 10(b) give the average CPU time taken

by CD-DISC for colliding and collision-free elliptic disks, respectively. The three solid

lines correspond to the three different outputs (Variants 1, 2 & 3 as described in Section

2.5.3) that CD-DISC can report. Clearly, more time is needed as the degree of motion

and hence the degree of ∆(t) increases. For two elliptic disks making a motion of

degree 6, for which the degree of ∆(t) is 144, it takes less than 1 ms to determine

whether there is any collision, less than 5 ms to compute the instant of first contact,

and less than 7 ms to compute all instants of contact.

For both colliding and collision-free ellipses, Variant 1 of the algorithm takes the

same time, since the computation involved to decide whether there is a collision (i.e.

to determine root existence by Sturm sequences) is the same in both cases. In the case

of colliding elliptic disks (Fig. 10a), more time is needed for Variants 2 and 3 to detect

the instants of contact; in general, the computation time increases as the number of

roots of ∆(t) increases. When there is no collision (Fig. 10b), ∆(t) has no root and

29



the average CPU time taken for reporting the instant of first contact (Variant 2) or the

instants of all contacts (Variant 3) is the same.

The dashed lines in the graphs show the time needed for obtaining the polynomial

∆(t) from the characteristic equation; in Variant 1, ∆(t) is obtained in the scaled

Bernstein form, while in Variants 2 and 3, the computation is done in the Bernstein

form. It is obvious that in Variants 2 and 3, obtaining ∆(t) takes up most of the overall

time for collision detection. Polynomial multiplications in the scaled Bernstein form

are much more efficient than that in the Bernstein form, which explains why the time

needed for obtaining ∆(t) in Variant 1 is much less than that needed in Variants 2 and

3.

Next, we use a worked example to show the robustness of the algorithm CD-DISC.

Example 2.2. Consider two ellipses A : x2

52 + y2

102 = 1 and B : x2

52 + y2

102 = 1. Two moving

elliptic disks A(t) and B(t), t ∈ [0, 1], are defined by applying to A and B the following

motions MA and MB:

MA =



−16t4 + 32t3 − 16t + 4 −32t3 + 48t2 − 16t −160t3 − 240t2

+ 160t− 40

32t3 − 48t2 + 16t −16t4 + 32t3 − 16t + 4 480t4 − 960t3

+ 880t2− 400t + 80

0 0 16t4 − 32t3

+ 32t2 − 16t + 4



,
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MB =



−16t4 + 32t3 − 16t + 4 32t3 − 48t2 + 16t 160t3 − 240t2

+ 160t− 40

−32t3 + 48t2 − 16t −16t4 + 32t3 − 16t + 4 −480t4 + 960t3

− 880t2 + 400t− 80

0 0 16t4 − 32t3 + 32t2

− 16t + 4



.

Figure 11: The two moving elliptic disks in Example 2 and their discriminant ∆(t).
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The characteristic equation is

f(λ; t) = det(λA(t)− B(t))

=(−4096t24+49152t23−294912t22+1171456t21−3446784t20+7974912t19

− 15048704t18 + 23721984t17 − 31756032t16 + 36517888t15 − 36360192t14

+ 31509504t13 − 23835904t12 + 15754752t11 − 9090048t10 + 4564736t9 − 1984752t8

+ 741312t7 − 235136t6 + 62304t5 − 13464t4 + 2288t3 − 288t2 + 24t− 1)λ3

+ (−135168t24 + 1622016t23 − 11304960t22 + 55959552t21 − 206878720t20

+ 588967936t19 − 1325514752t18 + 2409461760t17 − 3596409600t16 + 4461631488t15

− 4639457280t14 + 4065807360t13 − 3011391744t12 + 1886084608t11 − 997282816t10

+ 443501312t9 − 164884848t8 + 50819520t7 − 12842880t6 + 2624352t5 − 426168t4

+ 53808t3 − 5120t2 + 344t− 13)λ2

+ (135168t24 − 1622016t23 + 11304960t22 − 55959552t21 + 206878720t20

− 588967936t19 + 1325514752t18 − 2409461760t17 + 3596409600t16 − 4461631488t15

+ 4639457280t14 − 4065807360t13 + 3011391744t12 − 1886084608t11 + 997282816t10

− 443501312t9 + 164884848t8 − 50819520t7 + 12842880t6 − 2624352t5 + 426168t4

− 53808t3 + 5120t2 − 344t + 13)λ

+ 4096t24 − 49152t23 + 294912t22 − 1171456t21 + 3446784t20 − 7974912t19

+ 15048704t18 − 23721984t17 + 31756032t16 − 36517888t15 + 36360192t14

− 31509504t13 + 23835904t12 − 15754752t11 + 9090048t10 − 4564736t9 + 1984752t8

− 741312t7 + 235136t6 − 62304t5 + 13464t4 − 2288t3 + 288t2 − 24t + 1

= 0

while the discriminant ∆(t) is of degree 96 and is omitted. Fig. 11 shows the two

moving elliptic disks and the graph of ∆(t). The two disks are designed only to touch

each other externally at t = 0.5, and are separate for the rest of the time. All three

variants of CD-DISC determined correctly that there is a contact and Variants 2 and 3

reported the contact time accurately as t = 0.5. To examine the sensitivity of CD-DISC,

the lower disk in Fig. 11 was translated by a small amount in the negative y direction,
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so that the two moving disks attain a minimum separating distance d > 0 at t = 0.5.

CD-DISC reports collision when d < 10−6, and reports non-collision for larger values

of d. Note that the above analysis is only based on the specific setup in this example.

The robustness of the method depends not only on the degree of the motion, but

also varies with different input, e.g. sizes of the ellipses. However, it is not easy to

formulate the theoretical condition for the robustness of this method. If an error bound

is crucial to an application, one may consider the use of the interval arithmetic [1] in

the computations.

2.6 possible future work

We have demonstrated that the use of Bernstein forms for polynomial manipulation

significantly increases numerical stability of CD-DISC for high-degree rational motions,

which conforms the others’ observations [17, 16, 57]. Our experiments show that

CD-DISC is fast and accurate for detecting collisions between moving ellipses under

continuous rational motions of degree 6 or less; note that research [68] in planar

rational motions suggests that rational motions of degree 4 are adequate for modeling

all smooth motions in practice.

There are several problems open for further research. Knowing the minimum

distance between two collision-free moving elliptic disks would be useful for motion

path planning. Work is needed to study the relationship between the minimum

distance and the value of the discriminant ∆(t). An observation that can already

be made is that the difference between the two negative roots of the characteristic

polynomial becomes smaller as the two separate disks approach each other gradually,

and eventually the two roots merge into a negative double root, at which point the

two disks become externally tangential to each other, signaled by the vanishing of the

discriminant function.
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3
E L L I P S E S M O V I N G I N T H E S PA C E

We now consider CCD of ellipses moving in R3. Our idea is to transform the problem

into a 1D collision detection problem in the line where the containing planes of the

ellipses intersect. We will establish the formulation of the problem reduction, and

provide an algorithm which is devised based on a detailed analysis of the 1D problem.

3.1 reduction from 3d to 1d

Consider two moving ellipses Â(t) : XT Â(t)X = 0 and B̂(t) : XT B̂(t)X = 0 in R3. Let

ΠA(t) and ΠB(t) be the planes containing Â(t) and B̂(t), respectively. Suppose that

ΠA(t) 6= ΠB(t) and let L(s; t) be their line of intersection, where s is a parameterization

of the line.

Substituting L(s; t) into the ellipse equations, we have:

h(s; t) : XT(s; t)Â(t)X(s; t) = 0 (3.1)

g(s; t) : XT(s; t)B̂(t)X(s; t) = 0

We first assume that t is fixed, i.e., we consider two static ellipses Â (on plane ΠA)

and B̂ (on plane ΠB) in R3, and that ΠA and ΠB intersect at line L(s). Hence we have:

h(s) : XT(s)ÂX(s) = 0

g(s) : XT(s)B̂X(s) = 0
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The solution of h(s) = 0 gives the intersection between L(s) and Â. Likewise, the

solution of g(s) = 0 gives the intersection between L(s) and B̂.

Since h(s) and g(s) are quadratic in s, we may write

h(s) =
(

s 1
)

A

 s

1

 and g(s) =
(

s 1
)

B

 s

1


where A and B are 2× 2 real coefficient matrices. It means that h(s) and g(s) can

be considered as two “1D ellipses” A and B (i.e., intervals or line segments) which

can be either real or imaginary. Now, Â and B̂ intersect if and only if there is real

intersection between A and B. Hence, we have essentially reduced a 3D problem

(namely, collision detection of ellipses moving in the space) to a 1D problem (collision

detection of intervals in a line.)

3.2 condition for separation of 1d ellipses

Let us now consider the intersection of A : XT AX = 0 and B : XT BX = 0 in C, where

A and B are 2× 2 real matrices and X = (x 1)T is the homogeneous coordinates of a

point in C.

Let f(λ) = det(λA− B) be the characteristic polynomial of A and B. We then study

the relationship between the roots of f(λ) and the intersection of A and B.

Let us first assume that both A and B are real. By an affine transformation, we may

assume that A = [−1, 1], and that B = [a, b] for some a, b ∈ R. Then we have

h(x) = XT AX = x2 − 1

g(x) = XT BX = (x− a)(x− b)

where

X =

 x

1

 , A =

 1

−1

 and B =

 1 − a+b
2

− a+b
2 ab

 ,
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and

f(λ) =

∣∣∣∣∣∣ λ− 1 a+b
2

a+b
2 −λ− ab

∣∣∣∣∣∣ = −λ2 + (1− ab)λ− (
a− b

2
)2.

Let λ1, λ2 be the two roots of f(λ) = 0. There are three cases:

Case I: λ1 and λ2 are real and distinct. Then the discriminant of f(λ) is ∆ =

(a2 − 1)(b2 − 1) > 0, and we have (1) |a| > 1 and |b| > 1; or (2) |a| < 1 and

|b| < 1. Also, since λ1 · λ2 = ( a−b
2 )2 ≥ 0, λ1 and λ2 must be of the same sign,

or either one equals 0.

1. If λ1, λ2 > 0, then λ1 + λ2 = 1 − ab > 0. Hence ab < 1 and we

have [−1, 1] ⊂ [a, b] which corresponds to (1) |a| > 1 and |b| > 1, or

[a, b] ⊂ [−1, 1] which corresponds to (2)|a| < 1 and |b| < 1. When either

λ1 or λ2 equals 0, we have a = b ∈ [−1, 1].

2. If λ1, λ2 < 0, then λ1 + λ2 = 1 − ab < 0. We have ab > 1 which

corresponds to (1) |a| > 1 and |b| > 1, i.e., the interval [a, b] ∩ [−1, 1] =

∅. When either λ1 or λ2 equals 0, we have a = b.

Case II: λ1 = λ2 is a real double root. Then ∆ = (a2 − 1)(b2 − 1) = 0, i.e. a = ±1

or b = ±1. Also, λ1 = (1− ab)/2. Since a and b are symmetric in this

expression, we will only consider a = ±1.

• Suppose that λ1 = λ2 = (1− ab)/2 > 0 is a positive double root. If

a = 1, then b < 1; If a = −1, then b > −1. Hence, the intervals [−1, 1]

and [a, b] share a common boundary point and one interval contains

the other. Or we say that the two intervals have an internal touch.

• Suppose that λ1 = λ2 = (1− ab)/2 < 0 is a negative double root. If

a = 1, then b > 1; if a = −1, then b < −1. Hence, the intervals [−1, 1]

and [a, b] share a common boundary point; however, they do not overlap.

The intervals are said to be in external touch.

• Suppose that λ1 = λ2 = 0. Since ( a−b
2 )2 = 0, we have a = b = ±1.
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Case III: λ1 and λ2 are complex conjugates. We have ∆ = (a2 − 1)(b2 − 1) < 0. Then,

either (1) |a| < 1 and |b| > 1 or (2) |a| > 1 and |b| < 1. Hence, we have either

−1 < a < 1 < b or a < −1 < b < 1. Equivalently, the intervals [−1, 1] and

[a, b] overlap but neither one is contained in the other.

We next consider the case when at least one of A or B is imaginary. Without loss

of generality, let us assume that A is imaginary. Since the coefficients of the matrix A

(and hence the coefficients of h(x)) are real, we have A = [z, z̄] where z ∈ C and z̄ is

the complex conjugate of z. By an affine transformation, A can be mapped to the two

points [i,−i] and B to [a, b] where a, b may be either real or imaginary. We then write

h(x) = XT AX = x2 + 1

g(x) = XT BX = (x− a)(x− b)

where

X =

 x

1

 , A =

 1

1

 and B =

 1 − a+b
2

− a+b
2 ab

 ,

and

f(λ) =

∣∣∣∣∣∣ λ− 1 a+b
2

a+b
2 λ− ab

∣∣∣∣∣∣
= λ2 − (1 + ab)λ− (

a− b
2

)2.

Now, the discriminant of f(λ) is ∆ = (a2 + 1)(b2 + 1) ≥ 0, and hence we have the

following two cases:

Case I: λ1 and λ2 are real and distinct. Since λ1 · λ2 = −( a−b
2 )2, we have:

• If λ1 and λ2 are of the same sign, i.e., λ1 · λ2 > 0, then ( a−b
2 )2 < 0 and

a, b are imaginary. Moreover, λ1 + λ2 = 1 + ab > 0. Hence, λ1 > 0 and

λ2 > 0.

• If λ1 and λ2 are of different signs, i.e., λ1 · λ2 < 0, then ( a−b
2 )2 > 0 and

a, b are real.
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Case II: λ1 = λ2 is a real double root. Then ∆ = 0 implies a2 + 1 = 0 or b2 + 1 = 0.

In both cases, we have B = {a, b} = {i,−i}, i.e., A = B. Moreover, λ2
1 =

−( a−b
2 )2 = 1 > 0.

So far, we have considered the cases where at least one of A or B are non-degenerate,

i.e., the 1D ellipse is a line segment of non-zero length. Now, let us assume that both

A and B are degenerate. We may further assume that A = {0} and B = {b}. Then,

h(x) = XT AX = x2

g(x) = XT BX = (x− b)2

where

X =

 x

1

 , A =

 1

0

 and B =

 1 −b

−b b2

 ,

and

f(λ) =

∣∣∣∣∣∣ λ− 1 b

b −b2

∣∣∣∣∣∣
= −b2λ.

It is easy to see that if A = B, then b = 0 and f(λ) ≡ 0. Otherwise, f(λ) is linear and

has a single root equals 0. Table 2 summarizes two 1D ellipses and the roots of their

characteristic equation.

3.3 the algorithm for detecting collision of two moving ellipses in

the 3d space

Theorem 3.1 follows from the problem reduction in section 3.1 and the separation

condition of 1D ellipses in section 3.2:

Theorem 3.1. Given two ellipses Â (on plane ΠA) and B̂ (on plane ΠB) in R3, and that

ΠA and ΠB intersect at some line L ∈ R3. Let A : XT AX = 0 and B : XT BX = 0 be the

“1D ellipses” characterizing the intersections of L with Â and B̂, respectively (as described in
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Table 2: Configuration of two 1D ellipses and the roots of their characteristic equation.
Ellipses are represented in pairs of brackets of the same style. Real intervals
are represented by solid brackets, while imaginary intervals are represented
by dotted brackets. Degenerate intervals of one point is represented by a dot
or a cross.

The two roots of f(λ) = 0 Configuration

Distinct positive

Distinct negative

One zero, one positive

One zero, one negative

One negative, one positive

Double positive

Double negative

Double zero

Complex conjugate

f(λ) is linear with root equals 0

f(λ) ≡ 0
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section 3.1.) Furthermore, let f(λ) = det(λA− B) be the characteristic polynomial of A and

B. Then, the ellipses Â and B̂ are in external touch in R3 if and only if

1. f(λ) has a double negative root (Figure 12a); or

2. f(λ) has a double root equals 0 (Figure 12b); or

3. f(λ) ≡ 0 (Figure 12c).

Here an ellipse is considered to comprise of the set of points that satisfies XTEX ≤ 0, where E

is the coefficient matrix of the ellipse. Two ellipses Â and B̂ are in external touch if and only if

Â ∩ B̂ 6= ∅ and Int(Â) ∩ Int(B̂) = ∅ where Int(·) denote the interior of a point set.

(a) (b) (c)

Figure 12: The three configurations of two touching ellipses in 3D. Sub-figures (a),
(b), (c) correspond to the three conditions (1), (2), (3), of Theorem 3.1,
respectively.

We now present an algorithm for collision detection of two moving ellipses in R3.

This algorithm is in spirit similar to CD-DISC in section 2.3 for detecting collision of

two moving ellipses in a plane. It computes a discriminant ∆(t) of the characteristic

equation f(λ; t) = 0 of two moving 1D ellipses, whose roots corresponds to time

instants t0 where f(λ; t0) = 0 has a double root or f(λ; t0) ≡ 0. This in turn indicates

when the moving ellipses are in contact in R3.

Algorithm: CD-DISC3D

Input: Two moving ellipses Â(t) : XT AX = 0 and B̂(t) : XT BX = 0 in R3,

t ∈ [0, 1], and that A(0) and B(0) are separate.

Output: Whether A(t) and B(t) collide in [0, 1]: collision or collision-free.

Step 1: Let ΠA(t) and ΠB(t) be the containing plane of A(t) and B(t), respectively.

If ΠA(t) ≡ ΠB(t) for t ∈ [0, 1], the collision detection of A(t) and B(t) can
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be reduced to that of two moving ellipses in a plane and therefore be solved

using the algorithm CD-DISC in Chapter 2.

Step 2: Otherwise, compute the intersection line L(s; t) = u(t) + s · v(t) between ΠA(t)

and ΠB(t).

Step 3: Compute

h(s; t) : XT(s; t)Â(t)X(s; t) = 0 and g(s; t) : XT(s; t)B̂(t)X(s; t) = 0

as in Eq. (3.1).

Step 4: Rewrite h(s; t) and g(s; t), and obtain A(t), B(t) as in

h(s; t) =
(

s 1
)

A(t)

 s

1

 and g(s; t) =
(

s 1
)

B(t)

 s

1

 .

Step 5: Compute f(λ; t) = det(λA(t)− B(t)).

Step 6: Compute the discriminant of ∆f(t) of f(λ; t).

Step 7: Let the roots of ∆f(t) be 0 < t0 < ... < tk < 1. For each ti,

• If ΠA(ti) ≡ ΠB(ti), mark ti as valid if A(ti) and B(ti) have contact

(determined using the separate condition of two ellipses in a plane given

by Theorem 2.6); otherwise, mark ti as invalid.

• Else if ΠA(ti) 6= ΠB(ti) and ΠA(ti) ‖ ΠB(ti), mark ti as invalid.

• Else mark ti as valid.

Step 8: If ∆f(t) has no valid root in [0, 1], report collision-free; otherwise, report

collision.

Remark 3.2. Step 7 above serves to verify whether a root ti corresponds to a valid

contact time instant, since the case where ΠA(ti) ‖ ΠB(ti) will also lead to ∆(ti) = 0.

Similar to CD-DISC, we may also compute the contact time for the ellipses. For

example, the first contact time instant of A(t) and B(t) will be given by the smallest

valid root of ∆f(t) = 0 in [0, 1].

An example for CCD of two ellipses moving in 3D will be given later in section 6.4.
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4
S TAT I C E L L I P S O I D S

In this chapter, we present an algorithm for detecting overlap between two stationary

ellipsoids, focusing on an efficient implementation with a minimized number of

arithmetic operations. The result will be further combined with a simple method for

constructing a separating plane for two disjoint ellipsoids, and an efficient algorithm

is devised for detecting collisions between two moving ellipsoids whose motions are

described by sampled positions at consecutive time frames.

4.1 detecting overlap between stationary ellipsoids

In this section we present an efficient algorithm for detecting overlap between two

stationary ellipsoids which are assumed to be sampled instances of two moving

ellipsoids at the same instant. This algorithm is based on the separation condition for

two ellipsoids proved in [70]. The contribution here is an optimized algorithm with a

minimal number of arithmetic operations; we conclude that 107 additions/subtractions,

141 multiplications and 6 divisions are needed. This efficient implementation, while

having practical values in its own right, will be invoked in the subsequent method for

the continuous collision detection of moving ellipsoids as described later in Chapter 5.

An ellipsoid A is represented by a quadratic equation XT AX = 0 in E3, where

X = (x, y, z, w)T are the homogeneous coordinates of a point in 3D space. The

symmetric matrix A is normalized so that the interior of A is given by XT AX < 0; this

amounts to assuming that the determinant |A| < 0.
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Two ellipsoids are said to be overlapping if their interiors have non-empty intersection.

They are said to be separate or disjoint if their boundary surfaces and interiors share no

common points. Two ellipsoids that are not separate but share no common interior

points are said to be touching.

For two ellipsoids A : XT AX = 0 and B : XT BX = 0 in E3, the quartic polynomial

f(λ) = det(λA− B) is called the characteristic polynomial and f(λ) = 0 is called the

characteristic equation of A and B. The polynomial f(λ) has degree 4, its leading term

has a negative coefficient, and it always has two positive real roots. The following

theorem [70] captures the relationship between the geometric configuration of two

ellipsoids and the roots of their characteristic equation:

Theorem 4.1. (Separation condition of two stationary ellipsoids) Let A and B be two

ellipsoids with characteristic equation f(λ) = 0. Then,

1. A and B are separate if and only if f(λ) = 0 has two distinct negative roots;

2. A and B touch each other externally if and only if f(λ) = 0 has a negative double root.

Remark 4.2. Note that the theorem in [70] assumes that the characteristic equation has

the form of f(λ) = det(λA + B) = 0 and therefore the result there is stated in terms

of positive roots. Our changes here make the presentation consistent with the classic

literature in linear algebra.

Remark 4.3. Clearly, the leading coefficient and the constant term of f(λ) are |A| and

|B|. So they are negative [70]. This implies that f(λ) = 0 has two distinct negative roots

if and only if f(λ0) > 0 for some λ0 < 0. The latter condition on a sign test is more

convenient, especially when we consider two moving ellipsoids.

Figure 13(a) shows two disjoint ellipsoids. Note that their characteristic equation

has two distinct negative roots. In Figure 13(b), two ellipsoids overlap and their

characteristic equation does not have any negative root.
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(a)

(b)

Figure 13: Two (a) disjoint; (b) overlapping ellipsoids and the corresponding f(λ).

4.1.1 Characteristic polynomial

For efficient implementation, it is crucial to set up the characteristic equation using a

minimal number of arithmetic operations. We now present an efficient algorithm for

this computation.

An ellipsoid is said to be in canonical form if it is represented by a diagonal matrix

A =



1/a2 0 0 0

0 1/b2 0 0

0 0 1/c2 0

0 0 0 −1


. (4.1)
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Under an affine transformation MA this ellipsoid is transformed to one in a general

form with coefficient matrix (M−1
A )T AM−1

A . Now assume that we use two transforms

MA and MB to obtain two ellipsoids (M−1
A )T AM−1

A and (M−1
B )T BM−1

B , where A

and B are diagonal matrices representing ellipsoids in canonical positions. Then

the characteristic polynomial of the two ellipsoids is f(λ) = det(λ(M−1
A )T AM−1

A −

(M−1
B )T BM−1

B ).

In the following we first compute the coefficients of the quartic polynomial f(λ),

and then the signs of the roots of the polynomial are computed to determine the

relative configuration of the two ellipsoids. Given two ellipsoids represented as the

images of their standard diagonal form (cf. (4.1)) under the transformations MA and

MB, we may simultaneously transform them to A and MT
A(M−1

B )T BM−1
B MA, where

A is a diagonal matrix as in (4.1) and MT
A(M−1

B )T BM−1
B MA is treated as a general

4× 4 matrix. The characteristic polynomial then takes the following form: f(λ) =

det(λA−MT
A(M−1

B )T BM−1
B MA); obviously the roots of the characteristic polynomial

remain the same as before. The power form of f(λ) in λ can be obtained by expanding

the determinant det(λA−MT
A(M−1

B )T BM−1
B MA). Then we can use its Sturm sequence

to determine whether the two ellipsoids overlap, by Theorem 4.1.

4.1.2 Computational cost

To count the number of the negative real roots of f(λ), we will first compute the Sturm

sequence of f(λ) and then check the sign flips of this sequence at 0 and −∞. For the

moment we assume that MA and MB are Euclidean transformations, since this is a

case that is used most often in applications. To compute MT
A(M−1

B )T BM−1
B MA, we

note that MB is the composition of a rotation RB followed by a translation VB, so its

inverse M−1
B is equivalent to a rotation RT

B followed by a translation −RT
BVB. Based on

this observation, we can count the arithmetic operations as follows:

1. Computing M−1
B requires 9 additions/subtractions and 9 multiplications.

2. M−1
B MA requires 27 additions/subtractions and 36 multiplications.

3. MT
A(M−1

B )T is the transpose of M−1
B MA, and so needs no arithmetic operation.
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4. Since B is a diagonal matrix, BM−1
B MA requires 12 multiplications.

5. Finally, MT
A(M−1

B )T BM−1
B MA can be constructed using additional 21 additions/-

subtractions and 30 multiplications.

Thus we need 57 additions/subtractions and 87 multiplications to obtain MT
A(M−1

B )T BM−1
B MA.

Then the characteristic polynomial can be computed with another 29 additions/sub-

tractions and 39 multiplications using the algorithm presented in section 4.1.3. The

derivative of a quartic polynomial can be computed using 3 multiplications. To divide

a degree n polynomial by a degree (n− 1) polynomial, we need 2(n− 1) additions/-

subtractions, 2(n− 1) multiplications and 2 divisions. Thus we can compute the Sturm

sequence using 12 additions/subtractions, 15 multiplications and 6 divisions. To find

the number of negative real roots, we need to examine the signs of the leading term

and constant term of the polynomials in the Sturm sequence, for which 8 addition-

s/subtractions are needed to count the number of sign flips. In summary, we need a

total of 107 additions/subtractions, 141 multiplications and 6 divisions for collision

detection between two stationary ellipsoids.

When the two stationary ellipsoids above are sampled from affine motions, it can be

shown that we need a total of 125 additions/subtractions, 156 multiplications and 18

divisions for detecting their collision. The different arithmetic operation count from

the case of rigid motions is due solely to the inverse computation of M−1
B which takes

a lot more operations for affine motions. We skip the detailed counting here.

We have implemented the collision detection algorithm in C++ and run our tests on

a desktop PC with an Intel Core 2 Duo E6600 2.40 GHz CPU (single-threaded) and a

2GB main memory. In the case of motion matrices with elements of rational degree 4,

the matrices MA and MB are constructed using about 100 additions/subtractions and

100 multiplications. Including this, the whole procedure of detecting overlap between

two ellipsoids took less than 0.7 µsec.
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4.1.3 Coefficients of the characteristic polynomial

We present an efficient algorithm for computing the five coefficients of the charac-

teristic polynomial f(λ) of degree 4. Let MT
A(M−1

B )T BM−1
B MA = [bij]4×4. Then the

characteristic polynomial is given in the following simple form:

f(λ) = det(λA−MT
A(M−1

B )T BM−1
B MA)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

λ/a2 − b11 −b12 −b13 −b14

−b21 λ/b2 − b22 −b23 −b24

−b31 −b32 λ/c2 − b33 −b34

−b41 −b42 −b43 −λ− b44

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

By expanding this determinant, the five coefficients can be constructed as follows:

The 4th-degree term (T4):

− 1
a2b2c2

The 3rd-degree term (T3):

b11

b2c2 +
b22

a2c2 +
b33

a2b2 −
b44

a2b2c2

The 2nd-degree term (T2):

b33b44 − b34b43

a2b2 +
b11b44 − b14b41

b2c2 +
b22b44 − b24b42

a2c2

+
b23b32 − b22b33

a2 +
b13b31 − b11b33

b2 +
b12b21 − b11b22

c2

The 1st-degree term (T1):

−b22b33b44 + b22b34b43 + b33b42b24

a2 +
b44b32b23 − b32b24b43 − b42b23b34

a2

+
−b11b33b44 + b11b34b43 + b33b14b41

b2 +
b44b13b31 − b31b14b43 − b41b13b34

b2

+
−b11b22b44 + b11b24b42 + b22b14b41

c2 +
b44b12b21 − b21b14b42 − b41b12b24

c2

+b11b22b33 − b11b23b32 − b22b13b31 − b33b12b21 + b21b13b32 + b31b12b23
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The constant term (T0):

b11b22b33b44 − b11b22b34b43 − b11b33b24b42 − b11b44b23b32

−b22b33b14b41 − b22b44b13b31 − b33b44b12b21

+b11b32b24b43 + b11b23b34b42 + b22b13b34b41

+b22b31b14b43 + b33b12b24b41 + b33b21b14b42 + b44b12b23b31

+b44b21b13b32 + b12b21b34b43 + b13b31b24b42 + b14b41b23b32

−b21b14b43b32 − b21b13b34b42 − b31b12b24b43

−b31b14b42b23 − b41b12b23b34 − b41b13b32b24

If MA and MB are rigid transformations, the constant term equals det(−B) and the

following function efficiently computes the coefficients f(λ) using 29 additions/sub-

tractions and 39 multiplications.

Generate-Characteristic-Polynomial

/* Variable definition

ea,eb,ec are the diagonal members of matrix A

ab = ea * eb, ac = ea * ec, bc = eb * ec,

abc = ea * eb * ec

bij is a member of the matrix MT
A(M−1

B )T BM−1
B MA

*/

begin

b12s = b12 * b12; b13s = b13 * b13;

b14s = b14 * b14; b23s = b23 * b23;

b24s = b24 * b24; b34s = b34 * b34;

b2233 = b22 * b33;

termA = b11 * bc + b22 * ac + b33 * ab;

termB = (b2233 − b23s)*ea + (b11 * b33 − b13s)*eb

+ (b11 * b22 − b12s)*ec;

T4 = −abc;

T3 = termA − b44 * abc;

T2 = termA * b44 − termB − b34s * ab − b14s * bc

− b24s * ac;

tmp1 = termB * b44;

tmp2 = b11*(b2233 + eb * b34s + ec * b24s − b23s);
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tmp3 = b22*(ea * b34s + ec * b14s − b13s);

tmp4 = b33*(ea * b24s + eb * b14s − b12s);

tmp5 = b34*(ea * b23 * b24 + eb * b13 * b14)

+ b12*(ec * b14 * b24 − b13 * b23);

tmp5 += tmp5; // multiply by 2

T1 = −tmp1 + tmp2 + tmp3 + tmp4 − tmp5;

T0 = constant; // constant value det[-B]

end;

4.1.4 Contact point of two touching ellipsoids

Part (2) of Theorem 4.1 states that two ellipsoids have external contact if and only if

their characteristic equation f(λ) = 0 has a negative double root λ0. It is also proved

in [70, Lemma 5] that the contact point of two touching ellipsoids is given by the

solution of (λ0 A− B)X = 0, as summarized in the following theorem.

Theorem 4.4. Suppose that two ellipsoids XT AX = 0 and XT BX = 0 touch externally, i.e.,

f(λ) = 0 has a negative double root λ0. Then rank(λ0 A− B) = 3 and the homogeneous

coordinates of the contact point X0 are given by the unique nontrivial solution (up to a

multiplicative constant) of (λ0 A− B)X = 0.

4.2 constructing a separating plane

It is well known that the efficiency of collision detection can be greatly improved by

the use of a separating plane [2]. Once a plane separating two ellipsoids is found,

there can be no collision between the ellipsoids until one of them collides with the

separating plane. Thus the original problem is reduced to two simpler subproblems

of searching for an intersection between a plane and an ellipsoid. Applying an affine

transformation, an ellipsoid and a plane can be reduced to a sphere and a plane, and

each of these subproblems then becomes equivalent to computing the distance between

the center of the sphere and a plane.
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Since ellipsoids are preserved under affine motion, our approach can be applied

to ellipsoids that are moving and deforming under affine transformation. This is an

important advantage over specialized algorithms that work only for simple geometric

shapes such as axis-aligned boxes, spheres, cylinders, cones, or tori; such algorithms

may not be generalized when affine motions are used.

In this section we show how to construct a separating plane of two disjoint ellipsoids.

Theorem 4.5. Let A : XT AX = 0 and B : XT BX = 0 be two disjoint ellipsoids. Let Vi

denote the four eigenvectors of A−1B associated with the eigenvalues λi, i = 0, 1, 2, 3. Then

their endpoints Vi form the vertices of a tetrahedron, denoted by [V0V1V2V3], that is self-polar

for the ellipsoids A and B 1. Furthermore, V0 and V1 are outside A and B, V2 is inside B, and

V3 is inside A.

Proof. Since A and B are disjoint, by Theorem 4.1, det(λA− B) = 0 has two distinct

negative roots and two positive roots: λ3 < λ2 < 0 < λ1 ≤ λ0. When λ1 < λ0,

the four eigenvalues of A−1B, which are equal to the roots of the quartic equation

f (λ) ≡ det(λA− B) = 0, are distinct. Thus their corresponding eigenvectors Vi are

linearly independent. From the equalities (λi A − B)Vi = 0 and (λj A − B)Vj = 0,

0 ≤ i < j ≤ 3, it follows that λiVT
i AVj − VT

i BVj = 0 and λjVT
i AVj − VT

i BVj = 0,

respectively. Since λi 6= λj, we have VT
i AVj = VT

i BVj = 0. When λ1 = λ0, it can easily

be shown [70] that the eigenspace of A−1B has dimension 2. Therefore, two linearly

independent vectors V0 and V1 can be selected to be the eigenvectors associated with

λ2 such that VT
i AVj = VT

i BVj = 0 for 0 ≤ i < j ≤ 3. Hence, the tetrahedron [V0V1V2V3]

is self-polar with respect to both A and B [58, 63]. This means that, for both ellipsoids,

each of the points Vi is the pole of a plane which passes through the other three vertices

of the tetrahedron [V0V1V2V3] (see Figure 14).

It follows from (λ0 A− B)V0 = 0 that λ0VT
0 AV0 −VT

0 BV0 = 0, since λ0 > 0, VT
0 AV0

and VT
0 BV0 have the same sign. If VT

0 AV0 < 0 and VT
0 BV0 < 0, then V0 would be inside

both A and B, and hence A and B would overlap. We deduce that VT
0 AV0 > 0 and

VT
0 BV0 > 0: i.e., V0 is outside A and B; similarly, V1 is outside A and B.

1 [V0V1V2V3] is a self-polar tetrahedron for a quadric XT AX = 0, if VT
i AVj = 0 for i 6= j. See [58], page 272.
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Figure 14: The tetrahedron [V0V1V2V3].

It follows from (λ3 A− B)V3 = 0 that λ3VT
3 AV3 −VT

3 BV3 = 0. Since λ3 < 0, VT
3 AV3

and VT
3 BV3 have different signs. We are going to show that VT

3 AV3 < 0: i.e. that V3 is

inside A.

Clearly, there is a point P on the line V2V3 which is outside both A and B. Thus

P = aV2 + bV3 for some constants a 6= 0 and b 6= 0. Then PT AP = a2VT
2 AV2 +

b2VT
3 AV3 > 0, since P is outside A. Similarly, PT BP = a2VT

2 BV2 + b2VT
3 BV3 > 0. Since

(λ2 A − B)V2 = 0 and (λ3 A − B)V3 = 0, we have BV2 = λ2 AV2 and BV3 = λ3 AV3.

Substituting for BV2 and BV3 yields

PT BP = a2VT
2 BV2 + b2VT

3 BV3

= a2VT
2 (λ2 AV2) + b2VT

3 (λ3 AV3)

= λ2(a2VT
2 AV2 + b2VT

3 AV3) + b2(λ3 − λ2)VT
3 AV3

= λ2PT AP + b2(λ3 − λ2)VT
3 AV3.

Thus

VT
3 AV3 = b−2(λ3 − λ2)−1(PT BP− λ2PT AP) < 0.

Hence, V3 is inside A. Similarly, it can be shown that V2 is inside B. This completes

the proof.
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Suppose that A : XT AX = 0 and B : XT BX = 0 are two disjoint ellipsoids. Since V3

is inside A, its polar plane V0V1V2 does not intersect A [58]; and, since V2 is inside

B, its polar plane V0V1V3 does not intersect B. Thus, the line V0V1, which is the

intersection of the planes V0V1V2 and V0V1V3, does not intersect either A or B. So there

are two planes, T A
L and T A

R , tangent to A that pass through V0V1 (see Figure 15(a)).

(a)

(b)

Figure 15: (a) Four planes passing through V0 and V1: T A
L and T A

R are tangent to
ellipsoid A; T B

L and T B
R are tangent to ellipsoid B; (b) A separating plane is

one that passes through V0, V1 and S, where S can be any point on the open
line segment (PA

R PB
L ).
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Let PA
L and PA

R denote the points at which T A
L and T A

R touch A. Clearly, A is

contained entirely between the planes T A
L and T A

R . Since the tetrahedron [V0V1V2V3]

is self-polar with respect to A, the line V0V1 is conjugate with the line V2V3. Hence,

the points PA
L and PA

R are on the line V2V3: i.e. the line segment [PA
L PA

R ] is contained in

V2V3. Let PB
L and PB

R denote the points where the two tangent planes T B
L and T B

R , that

pass through V0V1 touch the ellipsoid B. By a similar argument to that just used for

ellipsoid A, we can show that B is contained between the planes T B
L and T B

R , and the

line segment [PB
L PB

R ] is contained in the line V2V3.

Since A and B are disjoint, the line segments [PA
L PA

R ] and [PB
L PB

R ] are disjoint. Let

the four tangent points PA
L , PA

R , PB
L , and PB

R be labeled such that the open line segment

(PA
R PB

L ) is outside A and B (see Figure 15). Clearly, any plane passing through V0V1

and intersecting (PA
R PB

L ) does not intersect A or B and lies between A and B; hence,

this plane separates A and B.

Therefore, we have proved

Theorem 4.6. Any plane passing through the line V0V1 and intersecting the open line segment

(PA
R PB

L ) is a separating plane of A and B (see Figure 15(b)). In particular, the plane passing

through V0, V1, and PA
R touches A at PA

R , and the plane passing through V0, V1, and PB
L

touches B at PB
L .

Now we will consider the computational procedure for obtaining a separating plane

for two disjoint ellipsoids A and B. Using Theorem 4.1, we first compute the four

real roots of the characteristic equation f(λ) = det(λA− B) = 0: two of the roots are

positive and the other two are distinct negative roots, and can be labeled according to

the inequalities λ3 < λ2 < 0 < λ1 ≤ λ0. Since det(λA− B) = det(A) det(λI − A−1B),

these roots λi are also the eigenvalues of the matrix A−1B. The eigenvectors V2 and V3

are obtained by solving the equations (λi I − A−1B)X = 0, i = 2, 3. Next we compute

the points PA
R and PB

L where the line V2V3 intersects the ellipsoids A and B (see

Figure 15). Then we obtain the tangent plane T A
R of A at PA

R and the tangent plane T B
L

of B at PB
L . Since, by Theorem 4.6, T A

R and T B
L intersect on the line V0V1, a separating

plane can be found by taking an appropriate linear combination of the equations of

T A
R and T B

L .
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4.3 the complete algorithm

Based on the results discussed in the previous sections, we present below an algorithm

for detecting collision between two moving ellipsoids whose motions are given be

sampled positions in consecutive frames. Figure 16 gives a schematic description of

the algorithm.

Does the
candidate separating

plane separate
and      ?

Is
a candidate

separating plane
available?

Compute a new
separating plane

for the next frame.

Start

End

Yes

No

Yes

No

Yes

NoCompute the
roots of .f(L)

and
are disjoint.

and
collide.

Does          have
two distinct

positive roots?

Figure 16: Algorithm for collision detection between two ellipsoids Ai and Bi at frame
i.

Suppose that two ellipsoids Ai−1 and Bi−1 at frame i− 1 are disjoint. The separating

plane is computed and becomes the candidate separating plane at the next frame, i.

Under continuous motion, the positions and orientations of the moving ellipsoids

may be expected to change little between frame i − 1 and frame i. Thus, in most

cases, the candidate separating plane may still separate Ai and Bi, and this can be

verified efficiently. If the candidate separating plane at frame i does indeed separate

Ai and Bi, then a great deal of time is saved by avoiding solving the characteristic

equation of Ai and Bi, which is a relatively expensive procedure; otherwise, we need

to compute the roots of the characteristic equation, either to find that the ellipsoids

collide, or to find that they are disjoint and then to compute a new separating plane.

The algorithm is efficient because the non-collision case occurs much more frequently
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than the collision case, due to inter-frame coherence. It is also possible to maintain

more than one candidate separating plane, so as to increase the likelihood of detecting

disjoint ellipsoids.

A plane separates two ellipsoids if and only if (i) the plane does not intersect either

of the ellipsoids; and (ii) the centers of the two ellipsoids are on the opposite sides

of the plane. Since it is relatively easy to test the second condition, the problem

essentially reduces to that of testing whether a plane intersects an ellipsoid. Note that

an ellipsoid can be transformed to the unit sphere by an affine transformation, which is

normally available as the inverse of the motion matrix. Applying this transformation,

the problem is simplified to one of detecting the intersection between a plane and

a unit sphere centered at the origin. The problem can be further reduced to one of

finding the distance between the origin and a plane.

The availability of a separating plane not only simplifies the collision test in many

frames due to inter-frame coherence, but it also provides useful geometric information

about the relative positions of the ellipsoids. For example, the tangent points PA
R and

PB
L serve as good approximations to the pair of mutually closest points on the two

ellipsoids; in fact, if the ellipsoids are actually spheres, then PA
R and PB

L are exactly

the closest points. Furthermore, when two ellipsoids touch each other externally

(i.e. λ2 = λ3), PA
R and PB

L merge into the contact point, which provides very useful

information for computing collision impulses.

4.4 experimental results

In this section we shall demonstrate the effectiveness of the separating plane in speeding

up our method, and also compare our method with the GJK method [20]. For brevity,

our new algorithm will be referred to as EECD (for Exact Ellipsoid Collision Detection.)

To demonstrate the improved performance of EECD achieved by using the separating

plane, two ellipsoids of the same size (with principal axes of half-lengths 3, 3 and 5)

are made to rotate continuously about their centers for 10,000 frames. The distance

between the two centers is 8. Three sets of experiments are carried out in which the

ellipsoids rotate about a random axis with low, medium and high angular speeds
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(angular increments of 0.1, 0.5 and 1 radians per frame.) The simulation was run on a

PC equipped with a Pentium 4 2.26GHz processor and the results are shown in Table 3.

When the ellipsoids rotate at low angular speed, the orientations of the ellipsoids

between successive frames differ only by a little and we see that the use of separat-

ing planes allows the algorithm to identify as many as 8,310 separations out of the

overall 8,798 separations. As a consequence, the time taken for collision detection is

significantly reduced. As the angular speed increases, there are fewer cases where

the candidate separating plane reports separation, but a considerable amount of time

is still saved. EECD takes on average less than 5 microseconds per frame to detect

collisions between two ellipsoids. It is also obvious that, when the distance between

the two ellipsoids increases, more candidate separating planes will remain valid and

therefore the benefit of using separating planes becomes more remarkable. Optimal

performance is achieved when the candidate separating plane remains valid for all

frames.

The same sets of experiments are performed using a collision detection scheme that

solves the characteristic equation in every frame without using separating planes. It

takes about 8 microseconds to detect collision between two ellipsoids, longer than

that needed by EECD. We note that the running time is insensitive to the number of

collisions and separations in each test. This is because the same amount of computation

is required no matter whether the ellipsoids are disjoint or overlapping.

Angular velocity Low Medium High

Number of collisions (out of 10,000 frames) 1,202 1,554 1,622

Number of separations (out of 10,000 frames) 8,798 8,446 8,378

Number of separations reported by separat-
ing plane tests

8,310 6,029 4,502

Time per frame (µs) using the separating
plane, averaged over 10,000 frames (EECD)

2.474 3.985 4.982

Time per frame (µs) without using the sepa-
rating plane, averaged over 10,000 frames

7.906 7.951 7.899

Table 3: Experimental results demonstrating the effect of using the separating plane in
EECD.

Another experiment was conducted to compare EECD with the enhanced GJK

method, which has been described [43] as one of the most robust and efficient collision
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detection methods for convex polyhedra currently available. We have adapted the

routines for the enhanced GJK method 2 by removing the code for distance computation,

thus improving their efficiency for collision detection.

Figure 17: Experimental set-up corresponding to the results in Table 4: a sphere A(t)
moves along a circular orbit around an ellipsoid B. Bright spheres indicate
collision. Framed boxes bounding A(t) are disjoint from the bounding box
of B.

The experiment is set up as follows (see Figure 17). A sphere A(t) of radius 1.0 orbits

along a circular path around an ellipsoid B. The half-lengths of the three principal

axes of B are 4.5, 4, and 2, respectively. The path of A(t) lies on the plane determined

by the two longer principal axes of B. A(t) and B collide only near the two ends of the

longest principal axis of B, as shown by bright spheres in Figure 17. The central angle

subtended by the displacement of A(t) between two consecutive frames is 0.01 radians.

For each frame, the bounding boxes of A(t) and B are first checked. If they do not

intersect, separation is reported, shown by framed boxes bounding A(t) in the figure;

otherwise, a collision detection procedure, either EECD or enhanced GJK, is called.

Out of a total of 13,746 frames, the bounding boxes of A(t) and B intersect in 10,000

frames, and A(t) collides with B in 1,157 of these frames. Collision detection for the

10,000 frames using EECD takes 0.0212 seconds. Among the 8,843 frames in which A(t)

2 The enhanced GJK routines are due to Stephen Cameron and are available at
http://users.comlab.ox.ac.uk/stephen.cameron/distances.html.
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and B are disjoint, 8,020 frames are detected using separating planes. As a comparison,

the NECD scheme, without using separating planes, takes 0.0763 seconds for the same

set-up. Thus the use of separating planes reduces the computational time by a factor

of more than 3 in this example. As explained earlier, this improvement is specific in

this particular example, and varies with the orbit taken by A(t). In an extreme case,

the two ellipsoids would collide in all frames and the separating planes may offer no

benefit.

The enhanced GJK method was also run on the same set-up, with different numbers

of vertices (n) used for approximating A(t) and B. The results are summarized in

Table 4.

Enhanced GJK

EECD n=488 n=1,460 n=4,376 n=13,124

Collision detected (frames) 1,157 0 435 971 1,111

Separation detected (frames) 8,843 10,000 9,565 9,029 8,889

Time per frame (µs), aver-
aged over 10,000 frames

2.12 15.2 23.6 36.8 54.3

Table 4: Computation time for our algorithm, EECD, and for the enhanced GJK method, with a
varying number of vertices (n) used in the latter for polyhedral approximation of the
ellipsoids.

The results show that EECD is about an order of magnitude quicker than the

enhanced GJK method. When the ellipsoids are coarsely faceted, the enhanced GJK

method, is also fast; however when n = 488, it incorrectly reports collision as separation

in all frames. The number of misses reduces with increased resolution; when 13,124

vertices are used for polyhedral approximation, there are errors in only 46 frames,

but the computation time is now increased from 0.152 seconds to 0.543 seconds. This

trade-off between accuracy and efficiency is intrinsic to any collision detection methods

based on polyhedral approximation.

4.5 an alternative solution by subresultant sequence

We now present another method that involves only the evaluation of some expressions

for determining whether two static ellipsoids are separate, touching externally or

59



overlap. Although this method requires more arithmetic operations, but it has its own

value in solving the collision detection problem of two continuously moving ellipsoids

or quadrics as we shall see in Chapter 6. To facilitate discussions in association to the

classic theorems from the theory of equations, given two ellipsoids A : XT AX = 0 and

B : XT BX = 0 in R3, we shall assume that the characteristic polynomial of A and B is

given by

f̂(λ) = det(λA + B).

Hence, we have the followings [70]:

i. f̂(λ) = 0 has at least two negative roots.

ii. f̂(λ) = 0 has two distinct positive roots if and only if A and B are separate.

iii. f̂(λ) = 0 has a positive double root if and only if A and B touch externally.

Rewrite f̂(λ) in monomial form, we have

f̂(λ) = c4λ4 + c3λ3 + c2λ2 + c1λ + c0.

Since we assume that det(A) < 0 and det(B) < 0, we also have

c4 < 0 and c0 < 0.

We then consider the polynomial

f(λ) =
f̂(λ)
c4

= λ4 + aλ3 + bλ2 + cλ + d

with d > 0. Clearly, f(λ) has the same zeros as f̂(λ).

4.5.1 Conditions for separation and external touching

The ellipsoids A and B are either separate or externally touching if and only if the

following conditions are satisfied:
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(I) f(λ) = 0 has 4 real roots, counted with multiplicity.

(II) f(λ) = 0 has 2 positive roots, counted with multiplicity.

We consider the signed subresultant sequence of f and f′ [3]:

P = f, f′, sr2(λ), sr1(λ), res(f, f′) (4.2)

where

f = λ4 + aλ3 + bλ2 + cλ + d,

f′ = 4λ3 + 3aλ2 + 2bλ + c,

sr2(λ) = (−8b + 3a2)λ2 + (2ab− 12c)λ + ac− 16d,

sr1(λ) = (−6a3c + 2a2b2 − 12a2d + 28abc− 8b3 − 36c2 + 32bd)λ− 9a3d

+ a2bc + 3ac2 + 32abd− 4b2c− 48cd,

and res(f, f′) = −27a4d2 − 4a3c3 + 18a3bcd− 4a2b3d− 6a2c2d + 144a2bd2 + a2b2c2

− 192acd2 − 80ab2cd + 18abc3 + 144bc2d− 128b2d2 + 256d3

− 27c4 − 4b3c2 + 16b4d

We also write sr2(λ) = sr22 λ2 + sr12 λ + sr02, sr1(λ) = sr11 λ + sr01 and res = res(f, f′)

for simplicity.

Now, condition (I) is satisfied, i.e., f(λ) = 0 has 4 real roots, counting multiplicity, if

and only if any of the following three cases is true

(1) f(λ) = 0 has 4 distinct simple roots, i.e., res 6= 0 and Var(P ;−∞, +∞) = 4; or

(2) f(λ) = 0 has 1 double root and 2 simple roots, i.e., res = 0 and sr1(λ) 6= 0 and

Var(P ;−∞, +∞) = 3; or

(3) f(λ) = 0 has 2 double roots, i.e., res = 0 and sr1(λ) = 0 and sr2(λ) 6= 0 and

Var(P ;−∞, +∞) = 2

The other cases in which f(λ) = 0 has a root of multiplicity greater than 2 are not

considered, since f(λ) = 0 must not have any positive root (i.e., condition (II) must not

satisfied) as f(λ) = 0 have at least 2 negative roots and that d > 0.
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In case (1), we have Var(P ;−∞, +∞) = 4 and hence Var(P ;−∞) = 4 and Var(P ; ∞) =

0. We therefore have Var(1, 4, sr22, sr11, res) = 0, which implies that sr22 > 0, sr22 > 0

and res > 0. Using similar derivation, the above three cases are equivalently to

(1) sr22 > 0, sr11 > 0, res > 0; or

(2) sr22 > 0, sr11 > 0, res = 0; or

(3) sr22 > 0, sr11 = 0, sr01 = 0, res = 0

Furthermore, suppose now that (I) is satisfied, i.e., f(λ) = 0 has 4 real roots counting

multiplicity. Then (II) is also satisfied, i.e., f(λ) = 0 has 2 positive roots, if and only if

Var(1, a, b, c, d) = 2

Since it is not possible to have Var(1, a, b, c, d) = 4 (which means all real roots of

f(λ) = 0 are positive), we have

Var(1, a, b, c, d) = 2 iff a < 0 or b < 0 or c < 0.

4.5.2 Differentiating the separation and touching cases

We now further distinguish between the cases of separation and external touching.

Hence, for the three cases (1), (2) and (3), f(λ) = 0 also have 2 positive roots.

For case (1), f(λ) = 0 has 4 distinct simple roots and hence the two positive roots

must be distinct. Therefore, this corresponds to two separating ellipsoids.

For case (2), f(λ) = 0 has 1 double root and 2 simple roots, and the double root λ0

is given by sr1(λ) which is the gcd of f and f′. Given that sr11 > 0, if sr01 > 0, then

λ0 < 0 and f(λ) = 0 has two distinct positive roots corresponding to separation; if

sr01 < 0, then λ0 < 0 and f(λ) = 0 has a positive double root corresponding to external

touching.

For case (3), f(λ) = 0 has 2 double roots. Given that there are 2 negative and 2

positive roots, f(λ) = 0 must have a positive double root which corresponds to two

externally touching ellipsoids.
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f sr2(λ) sr2(λ)

ellipsoid
Case a/b/c sr22 sr11 sr10 res

status

(1) < 0 > 0 > 0 > 0 separate

< 0 > 0 > 0 > 0 = 0 separate

(2)

< 0 > 0 > 0 < 0 = 0 touching

(3) < 0 > 0 = 0 = 0 = 0 touching

4.5.3 A summary

The algebraic condition for two separating ellipsoids is:

(a < 0 or b < 0 or c < 0), sr22 > 0, sr11 > 0,
(
res > 0 or (res = 0 and sr01 > 0)

)

The algebraic condition for two externally touching ellipsoids is:

(a < 0 or b < 0 or c < 0), sr22 > 0, res = 0,
(
(sr11 > 0, sr01 < 0) or (sr11 = 0, sr01 = 0)

)

where
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sr22 = −8b + 3a2,

sr11 = −6a3c + 2a2b2 − 12a2d + 28abc− 8b3 − 36c2 + 32bd,

sr10 = −9a3d + a2bc + 3ac2 + 32abd− 4b2c− 48cd,

res = −27a4d2 − 4a3c3 + 18a3bcd− 4a2b3d− 6a2c2d + 144a2bd2 + a2b2c2 − 192acd2

− 80ab2cd + 18abc3 + 144bc2d− 128b2d2 + 256d3 − 27c4 − 4b3c2 + 16b4d

4.5.4 Computation costs

The algebraic conditions involve the evaluation of four polynomials, namely, sr22, sr11,

sr10 and res. By definition of the subresultants, these polynomials are the determi-

nants of some matrices defined by the coefficients of f(λ) and f′(λ). These matrices

share common submatrices and therefore, the evaluation of the polynomials could be

simplified as follows:

sr22 = −8b + 3a2

E1 = −2ab + 12c

E2 = 4b2 + 9ac

E3 = −b · sr22 − aE1 + E2

sr01 = = −3ad · sr22 − 4dE1 − cE3

E4 = −ac + 16d

E5 = −c · sr22 − aE4 − 2bc + 12ad

E6 = cE1 − bE4 − 3c2 + 8bd

sr11 = −2bE3 + 3aE5 − 4E6

E7 = cE5 + d(2b · sr22 + 4E4)

E8 = cE6 − d(2bE1 − 3aE4)

res = d(−2b · sr11 + 3a · sr01 + 4E7)− c(−c · sr11 + b · sr01 + aE7 − E8)
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The above expressions can be computed efficiently using 42 multiplications and 27

additions using the following code:

t1 = -3*a;

t2 = -(b + b);

t3 = a*c;

sr22 = -t1*a - 8*b;

t4 = sr22*b;

E1 = a*t2 + 12*c;

E2 = 4*b*b + 9*t3;

E3 = -t4 - a*E1 + E2;

sr01 = -c*E3 + d*(sr22*t1 - 4*E1);

E4 = -t3 + 16*d;

E5 = (- sr22 + t2)*c + (-E4 + 12*d)*a;

E6 = (E1 - 3*c)*c + (-E4 + 8*d)*b;

sr11 = E3*t2 - t1*E5 - 4*E6;

E7 = c*E5 - d*(-2*t4 - 4*E4);

E8 = c*E6 - d*(-t2*E1 + E4*t1);

res = d*(sr11*t2 - sr01*t1 + t*E7) - c*(-c*sr11 + b*sr01 + a*E7 - E8);
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5
M O V I N G E L L I P S O I D S W I T H C O N T I N U O U S M O T I O N

The continuous collision detection for moving ellipsoids in 3D space is far more

complex than that for moving ellipses in 2D plane. We discussed in Chapter 2 an

algebraic approach in solving the CCD problem for moving ellipses, where a univariate

polynomial is formulated whose roots correspond to the time instants at which the

ellipses are in internal or external touch. For moving ellipsoids, however, the same

approach of relying on detecting the roots of the univariate polynomial is infeasible.

Unlike the situation with elliptic disks (see Corollary 2.8), in 3D the characteristic

equation f(λ) = 0 may have a positive double root for a pair of separate ellipsoids

(compare the characteristic equation of two separate spheres, which always has a

double root λ = 1.) Thus, if we were to rely on detecting real zeros of the discriminant

for collision detection between moving ellipsoids, our algorithm would certainly fail

(i.e., have a false positive) because a zero of the discriminant can be caused by a positive

double root, which does not correspond to an external contact between the ellipsoids.

Based on the algebraic condition of Wang et al. [70] for the separation of two

stationary ellipsoids (cf. Theorem 4.1), we proposed a method that reduces the

CCD problem for two moving ellipsoids to an analysis of the zero set of a bivariate

polynomial equation which has high degree in the time parameter t. In this chapter

we shall present a new efficient numerical method to solve the CCD problem in real-

time, thus bringing ellipsoid-based continuous collision detection into the realm in

computer graphics for time critical applications. This is achieved by exploring the

special structure of the bivariate function under consideration and employing several

novel and efficient search techniques. It is assumed throughout that the motions of
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moving ellipsoids, either Euclidean or affine, are expressible as rational functions of

the time parameter t.

5.1 3d rational euclidean and affine motions

A rational Euclidean motion in E3 is given by

M(t) =


R(t) V(t)

0T 1

 , (5.1)

where V(t) ∈ E3, R(t) a 3 × 3 orthogonal matrix, and t can be considered as a

parameter of time. The motion is a composition of a rotation R(t) acting upon a

point in E3, followed by a translation V(t). All rational Euclidean motions can be

represented in (5.1) with

V(t) =
(

v0

v3
,

v1

v3
,

v2

v3

)T
, and

R(t) =
1
E


e2

0 + e2
1 − e2

2 − e2
3 2e1e2 − 2e0e3 2e0e2 + 2e1e3

2e0e3 + 2e1e2 e2
0 − e2

1 + e2
2 − e2

3 2e2e3 − 2e0e1

−2e0e2 + 2e1e3 2e0e1 + 2e2e3 e2
0 − e2

1 − e2
2 + e2

3


where E = e2

0 + e2
1 + e2

2 + e2
3 and v0, . . . , v3, e0, . . . , e3 are polynomials in t [30]. The

Euler parameters e0, e1, e2, e3 describe a rotation about a vector in E3 and are called the

normalized Euler parameters when E = 1. Readers are referred to [54] for a survey on

rational motion design and [24, 29, 30] for interpolating a set of positions in E3 using

piecewise B-spline motions.

When the entries of V(t) and R(t) are rational polynomials of maximal degree k,

we called M(t) a rational motion of degree k. An ellipsoid A(t) moving under a rational

motion M(t) is represented as XT A(t)X = 0, where A(t) = (M−1(t))T AM−1(t).
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Assume that the maximal degree of the entries in R(t) and V(t) are kR and kV ,

respectively. Then,

M−1(t) =


R(t)T

<kR> −R(t)TV(t)<kR+kV>

0T 1


and

A(t) =


P(t)<2kR> U(t)<2kR+kV>

U(t)T
<2kR+kV> s(t)<2(kR+kV)>


for some 3× 3 matrix P(t), 3-vector U(t), and scalar function s(t). Here, the bracketed

subscript represents the maximal degree of the entries of the associated entity.

For a rational affine motion in E3, the motion matrix M(t) is formed by replacing

R(t) in (5.1) by a 3× 3 non-singular matrix L(t). The motion is then a composition

of a linear transformation L(t) acting upon a point in E3, followed by a translation

V(t). Assume that the maximal degree of the entries in L(t) and V(t) are kL and kV ,

respectively. Here,

A(t) =


P(t)<6kL> U(t)<6kL+kV>

U(t)T
<6kL+kV> s(t)<6kL+2kV>


for some 3× 3 matrix P(t), 3-vector U(t), and scalar function s(t).

5.2 an affine motion interpolant

Assume that an ellipsoid A(t) is under a motion MA(t), and another ellipsoid B(t)

is similarly under a motion MB(t), for t ∈ [t0, t1]. The two ellipsoids A(t) and B(t)

collide if and only if the standard ellipsoid A collides with the moving ellipsoid B̂(t)
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under a relative motion M̂B(t) = M−1
A (t)MB(t), for t ∈ [t0, t1]. The ellipsoid B̂(t0)

with its center c0 is represented as follows:

B̂(t0) : (x− c0)T B0(x− c0) = 1,

where B0 is a symmetric positive definite matrix and x = (x, y, z)T is a point on the

ellipsoid B̂(t0). Similarly, the ellipsoid B̂(t1) with its center c1 is represented as follows:

B̂(t1) : (x− c1)T B1(x− c1) = 1,

where B1 is a symmetric positive definite matrix. Now we consider an interpolation

B̂(t) between the two ellipsoids

B̂(t) : (x− c(t))T B(t)(x− c(t)) = 1, (5.2)

where

c(t) =
t1 − t
t1 − t0

c0 +
t− t0

t1 − t0
c1,

B(t) =
t1 − t
t1 − t0

B0 +
t− t0

t1 − t0
B1.

Note that B(t) is symmetric positive definite if B0 and B1 are both symmetric and

positive definite. Thus B̂(t) represents a moving ellipsoid under an affine motion, for

t0 ≤ t ≤ t1.

By expanding the above representation of the ellipsoid B̂(t), we get

B̂(t) : xT B(t)x− 2xT B(t)c(t) + c(t)T B(t)c(t) = 1.

Using the homogeneous coordinates X = (x, y, z, w)T , we can represent the ellipsoid

B̂(t) as follows

B̂(t) : XT B̂(t)X = 0,
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where

B̂(t) =


B(t) −B(t)c(t)

−c(t)T B(t)T c(t)T B(t)c(t)− 1

 . (5.3)

From this formula, we can easily show that the characteristic polynomial f(λ, t) =

det(λA− B̂(t)) has degree 6 in t.

5.3 ccd equation for moving ellipsoids

We now present an efficient algorithm for continuous collision detection (CCD) be-

tween two moving ellipsoids: A(t) : XT A(t)X = 0 and B(t) : XT B(t)X = 0. Here

the ellipsoids may move under affine deformations, including the commonly used

Euclidean rigid motions as a special case.

We first introduce the continuous collision detection (CCD) equation of the two

moving ellipsoids A(t) and B(t). This CCD equation is simply the characteristic

equation of A(t) and B(t), f(λ; t) = det(λA(t)− B(t)) = 0, t ∈ [0, 1]. We will call

f(λ; t) the CCD function. The graph of the typical CCD function is shown in Fig. 18(a)

for two collision-free moving ellipsoids, and in Fig. 18(b) for two colliding moving

ellipsoids. (Note that λ is replaced by by a function of u as discussed below.)

Our CCD algorithm exploits some special features of the zero set of the CCD

equation. Consider a fixed time t0 ∈ [0, 1]. If A(t0) and B(t0) are separate, according

to the discussions in Section 4.1, f(λ; t0) = 0 has two negative real roots, that is, the

line t = t0 has two intersection points with the zero set of f(λ; t) in the half plane

λ < 0. If A(t0) and B(t0) overlap, f(λ; t0) = 0 has no negative real root, that is, the

line t = t0 has no intersection point with the zero set of f(λ; t) in the infinite strip

(−∞, 0]× [0, 1]. Finally, if A(t0) and B(t0) are externally tangent, the line t = t0 has a

tangential intersection (i.e., a double intersection point) with the zero set of f(λ; t) in

the half plane λ < 0.

To facilitate numerical processing, we use the reparameterization λ = u−1
u to map

the variable λ ∈ (−∞, 0] to u ∈ (0, 1], therefore the infinite strip (λ, t) ∈ (−∞, 0]× [0, 1]
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(a)

(b)

Figure 18: (a) A CCD function for two collision-free ellipsoids; (b) A CCD function for
two colliding ellipsoids. The blue and yellow regions are where F(u, t) > 0
and F(u, t) < 0, respectively. The zero set F(u, t) = 0 is given by the dark
blue curve. The red points in (b) represent the moments when the ellipsoids
are in external contact.
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is mapped to the region (u, t) ∈ (0, 1]× [0, 1]. This mapping preserves the structure of

f(λ; t) = 0 in the sense that the number of intersections between a horizontal line t = t0

and the zero set of f(λ; t) = 0 is the same as that between the line t = t0 and the zero

set of f(λ(u); t) = 0. Clearly, the transformed characteristic equation f(λ(u); t) = 0 has

the same zero set as the equation

F̂(u, t) ≡ det((u− 1)A(t)− uB(t)) = 0, (u, t) ∈ (0, 1]× [0, 1].

Recall that the elements of A(t) and B(t) are rational functions of t. Since we are only

interested in the zero set of F̂(u, t), we use F(u, t) to denote the bivariate polynomial

after cleaning up the common denominator in F̂(u, t). Clearly, F(u, t) and F̂(u, t) have

the same zero set. Furthermore, to improve numerical robustness we represent F(u, t)

in the Bernstein form. From now on, we will also call F(u, t) = 0 the CCD equation.

Based on the preceding discussion and notation, we have the following theorems:

Theorem 5.1. Any horizontal line t = t0 ∈ [0, 1] has at most two intersections with the zero

set of F(u, t) in the region (0, 1]× [0, 1]. In particular,

1. A(t0) and B(t0) are separate if and only if the line t = t0 intersects the zero set of

F(u, t) in two distinct points in (0, 1]× [0, 1];

2. the interiors of A(t0) and B(t0) intersect if and only if the line t = t0 does not intersect

the zero set of F(u, t) in (0, 1]× [0, 1];

3. A(t0) and B(t0) are externally tangent if and only if the line t = t0 has a double

intersection point with the zero set of F(u, t) in (0, 1]× [0, 1].

The next theorem is fundamental to our CCD algorithm.

Theorem 5.2. Let A(t) and B(t) be two moving ellipsoids in continuous motion in t ∈ [0, 1].

Suppose that at t = 0, the ellipsoids A(0) and B(0) are separate. Then A(t) and B(t) collide

in t ∈ [0, 1] if and only if there exists a time t0 in [0, 1] such that the line t = t0 has a double

intersection point (u0, t0) with the zero set of F(u, t) in the region (0, 1]× [0, 1].

Proof. Suppose that there exists a time t0 in [0, 1] such that the line t = t0 intersects

the zero set of F(t) at a double point in the region [0, 1]× [0, 1]. Then, by Theorem
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5.1, A(t0) and B(t0) touch each other externally. Therefore, A(t) and B(t) collide in

t ∈ [0, 1].

Now consider necessity. Suppose that A(t) and B(t) collide in t ∈ [0, 1]. Then either

A(t) and B(t) touch each other externally at some time t0 in [0, 1] or A(t) and B(t)

overlap with each other at some time t1 ∈ [0, 1]. In the former case, we are done. In

the latter case, since A(t) and B(t) are undergoing continuous motions and they are

separate at t = 0, there exists time t0 ∈ [0, t1] such that A(t) and B(t) touch each other

externally at t0. The proof is completed.

Theorem 5.2 suggests how to detect whether two moving ellipsoids collide. First we

may check if A(0) and B(0) are separate, using the procedure in Section 4.1. If not,

we are done; if yes, we need to check if there exists a time t0 in [0, 1] such that the line

t = t0 has a double intersection point (u0, t0) with the zero set of F(u, t) in (0, 1]× [0, 1].

Clearly, such a point (u0, t0) is a solution of the equations F(u, t) = Fu(u, t) = 0, where

Fu(u, t) denotes ∂F(u, t)/∂u. To find all the collision intervals, we note that whenever

the collision status of two ellipsoids switches from separation to overlap (or vice versa),

there must be a time instant at which the ellipsoids are in external contact; and hence

the key task of our collision detection algorithm now is to detect all real solutions of

F(u, t) = Fu(u, t) = 0 in the region (u, t) ∈ (0, 1]× [0, 1].

5.3.1 Solving the CCD equation

So far we have given an algebraic formulation of the problem under consideration.

Now we shall present a numerical method based on this formulation. Given two

moving ellipsoids over time [0, 1], if they are separate throughout a time interval

(t0, t1) ⊆ [0, 1], then the interval (t0, t1) is called a separation interval (SI). A separation

interval (t0, t1) is called a maximal separation interval if (1) the two ellipsoids contact each

other at t0 or t0 = 0; and (2) the two ellipsoids contact each other at t1 or t1 = 1. If the

ellipsoids overlap throughout the interval (t0, t1), then (t0, t1) is called an overlapping

interval (OI). Similarly, we can define the maximal overlapping interval. An interval

(t0, t1) ⊂ [0, 1] that is neither a separation interval nor an overlapping interval is called
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a mixed interval (MI). Our goal is to identify all the maximal separation intervals and

maximal overlapping intervals.

By solving the CCD equation, we mean determining all contact instants at which the

two ellipsoids are in external contact. Clearly, these instants define the endpoints of

all the maximal separation intervals and maximal overlapping intervals. The contact

instants correspond to the critical points in the zero set of the CCD equation—a solution

(u∗, t∗) of F(u, t) = 0 is said to be a critical point if it further satisfies Fu(u∗, t∗) = 0. In

this case the contact instant is t∗.

Basic idea

The idea of our algorithm is to subdivide recursively the motion interval [0, 1] into a

number of small intervals which can be confirmed to be either SI or OI. Then these

intervals can be merged to form maximal separation intervals and maximal overlapping

intervals.

During the process of our algorithm, for each interval (t1, t2) under consideration,

we first determine the collision status of the two ellipsoids at the two endpoints of

the interval. The interval (t1, t2) is temporarily labeled as a candidate separation interval

(CSI) if the two ellipsoids are either separate or touching at t1 and t2 (Fig. 19(a)), since

such an interval may be a separation interval in this case. Similarly, an interval (t1, t2)

is temporarily labeled as a candidate overlapping interval (COI), if the two ellipsoids are

either overlap or touching at t1 and t2 (Fig. 19(b)). Further processing is needed to

confirm whether a CSI is an SI, or a COI is an OI.

If the two moving ellipsoids have different collision status (either separate or collide)

at t1 and t2 (Fig. 19(c)), then (t1, t2) is a mixed interval (MI). In this case, we will find a

contact moment t∗ in (t1, t2), and use it to subdivide (t1, t2) into two intervals (t1, t∗)

and (t∗, t2). Evidently, one of the two intervals is a CSI and the other is a COI.

In the following we are going to devise robust tests to determine definitely whether

a CSI (or COI) is a separation (or overlapping) interval. If the collision status over the

entire interval is confirmed, we are done and the interval is labeled as an SI or OI.

Otherwise, the interval will be subdivided at some contact time t∗ so that we will work

on the resulting smaller intervals in a recursive manner, until the collision status of the

ellipsoids in all subintervals can be confirmed.
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Figure 19: Examples of intervals classified as (a) a candidate separation interval (CSI);
(b) a candidate overlapping interval (COI); and (c) mixed intervals with
different collision status at t1 and t2 will be divided at a contact instant t∗

and each of the two subintervals being classified as either a CSI or a COI.
The circled numbers are the collision status at a particular time instant (+1
for separation, 0 for external contact and −1 for overlapping).

To determine the collision status of two ellipsoids at a particular time t0, we introduce

the following state function:

State(t0) =


+1 if maxu F(u, t0) > 0, i.e., separate;

0 if maxu F(u, t0) = 0, i.e., touching;

−1 if maxu F(u, t0) < 0, i.e., overlap.

Instead of using the efficient method in Section 4.1.2, this function makes use of the

sign of maxu F(u, t0) to check the collision status of two static ellipsoids, whose value

can be found by solving the cubic equation Fu(u, t) = 0 and can be reused in other

steps of the algorithm, e.g., for the computation of contact time as discussed below.

Here, State(t0) = 0 if and only if (u0, t0) is a critical point for some u0 ∈ (0, 1].

We now describe our algorithm in details.

Initialization

We start by classifying the initial interval [0, 1] as a CSI or a COI, depending on the

collision status at t = 0 and t = 1. If the collision status at t = 0 and t = 1 are different,

we compute a contact instant t∗ (corresponding to a critical point (u∗, t∗)) where the

ellipsoids are in external contact, using the following operation:
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• ContactTime: This is to determine a contact instant in an interval [t1, t2], when

the collision status of the ellipsoids at t1 and t2 are different. It is done by a

binary search in t to find t∗ ∈ [t1, t2] such that State(t∗) = 0. We then have

ContactTime(t1, t2) = t∗. (In the binary search, we take into account the local

maximum values maxu F(u, t1) and maxu F(u, t2). But we omit the details here.)

We then subdivide [0, 1] into two smaller intervals [0, t∗) and (t∗, 1], and classify each

as a CSI or a COI (as in Fig. 19(c) with t1 = 0 and t2 = 1). The procedures are given in

the following algorithm:

Algorithm 1 Initialization

Input: F(u, t) with (u, t) ∈ (0, 1]× [0, 1]

if State(0) = +1 and State(1) = +1 then

label [0, 1] as CSI

else if State(0) = −1 and State(1) = −1 then

label [0, 1] as COI

else

t∗ ← ContactTime(0, 1)

report the contact time t∗

if State(0) = −1 then

label [0, t∗) as COI and (t∗, 1] as CSI

else

label [0, t∗) as CSI and (t∗, 1] as COI

Remark 5.3. For the sake of robustness, if State(0) = 0, we replace State(0) by State(ε),

where ε > 0 is a sufficiently small constant. Similarly, if State(1)=0, we replace State(1)

by State(1− ε). Thus we assume that State(0) and State(1) can never be 0.

Processing candidate separation intervals

For a CSI (t1, t2), we use the following operation, called BézierShoot, to either confirm

that (t1, t2) is an SI or, if it is not, extract a separation interval which is a sub-interval

of (t1, t2).
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Figure 20: A Bézier shoot operation. (a) F(û, t) = 0 has no real root in [t1, t2]; (b) t̂ is
the smallest root of F(û, t) = 0 in [t1, t2].

• BézierShoot: A Bézier shoot from t1 to t2, denoted as BézierShoot(t1 → t2) = t̂, is

to find a separation interval (t1, t̂) ⊆ (t1, t2). It has two steps. In the first step, we

find û such that F(û, t1) = maxu F(u, t1) (As discussed in Remark 5.3, to ensure

robustness, t1 is replaced by t1 + ε if t1 is a contact instant.) If F(û, t1) ≤ 0, we

conclude that no SI can be thus extracted (and set t̂ = t1). Otherwise, we use

in the second step the Bézier clipping search [45] from t1 to t2 to find the first

root of F(û, t) = 0 (an equation in t with û being fixed), if there is one. This step

either concludes that there is no real root of F(û, t) = 0 in (t1, t2) (see Fig. 20(a)),

which implies that (t1, t2) is an SI (and hence t̂ = t2), or produces the smallest

root t̂ of F(û, t) = 0 in (t1, t2) (see Fig. 20(b)), which gives an SI (t1, t̂) ⊂ (t1, t2),

since a Bézier shoot ensures that F(û, t) > 0 for all t ∈ (t1, t̂). A Bézier shoot

from t2 to t1, i.e., BézierShoot(t1 ← t2), is defined similarly.
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Figure 21: The handling of a candidate separation interval (CSI) in the algorithm for
solving a CCD.
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Given a CSI (t1, t2), we perform two Bézier shoots from both ends of the interval to

extract a separation interval from each end. This results in two possible cases: (1) the

entire interval can be confirmed as an SI (Fig. 21(a)); or (2) two SIs (t1, t′) and (t′′, t2)

are obtained, and depending on the collision status of the ellipsoids at t̃ = (t′ + t′′)/2,

the subdivided intervals from [t′, t′′] are either labeled as CSIs or COIs (Fig. 21(b) &

(c)) for further processing as in the following algorithm:

Algorithm 2 CSI handling

Input: A candidate separation interval (CSI) (t1, t2)

if interval width t2 − t1 is sufficiently small then

report (t1, t2) as an OI (see Remark 5.4 below)

else

t′ ← BézierShoot(t1 → t2)

t′′ ← BézierShoot(t1 ← t2)

if t′ > t′′ then

report (t1, t2) as an SI . . . Fig. 21(a)

else

report (t1, t′) and (t′′, t2) as SIs

t̃← (t′ + t′′)/2

if State(t̃) = −1 then

t∗ ← ContactTime(t′, t̃) . . . Fig. 21(b)

t∗∗ ← ContactTime(t̃, t′′)

report contact time instants t∗ and t∗∗

label [t′, t∗), (t∗∗, t′′] as CSIs and

(t∗, t∗∗) as a COI

else

if State(t̃) = 0 then

report contact time instant t̃

label [t′, t̃), (t̃, t′′] as CSIs . . . Fig. 21(c)

Remark 5.4. One may wonder whether we should report (t1, t2) as an SI instead of

an OI when the difference t2 − t1 is sufficiently small. But in this case we cannot
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avoid some chance of having tiny loop(s) in the zero set of F(u, t). Thus to be more

conservative, we classify the interval as an OI.

Processing candidate overlapping intervals

For a candidate overlapping interval (COI) (t1, t2), we aim to identify some overlapping

intervals (OIs) within a COI, so that the remaining subintervals can be further processed.

Given a COI (t1, t2), if it contains any separation interval, then F(u∗, t∗) > 0 for some

t∗ ∈ (t1, t2) and the zero set of F(u, t) = 0 contains some close loops in the strip

(u, t) ∈ (0, 1]× (t1, t2). Hence, a COI can be confirmed as an OI if it does not contain

any loop, and this can be checked as follows.
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Figure 22: The handling of a candidate overlapping interval (COI) in the algorithm for
solving a CCD.

We first consider the coefficients of the Bernstein form of F(u, t). Using the convex

hull property of the Bernstein form [15], if all the coefficients are negative, the interval

(t1, t2) is an OI since we must have F(u, t) < 0 in this interval (Fig. 22(a)). If the

coefficients have different signs, we will check the existence of a loop in the zero set

of F(u, t) = 0. The existence of a loop in (t1, t2) implies that the derivative Ft(u, t)

cannot be of the same sign for all (u, t) ∈ (0, 1]× (t1, t2). For this, again using the

convex hull property, we check whether the control coefficients of Ft(u, t), expressed as

a bivariate Bernstein function on [0, 1]× (t1, t2), have the same sign. To make the test

more effective, we further limit this check only to the subregion in which F(u, t) can

possibly be positive for t ∈ (t1, t2); this subregion is the maximum extent of intersection

of the convex hull of the control polyhedron of F(u, t) and the ut-plane. If all these

coefficients of the Bernstein form of Ft(u, t) are of the same sign, then the zero set
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of F(u, t) does not have a loop in the interval (t1, t2), implying that (t1, t2) is an OI;

otherwise, if these coefficients have different signs, (t1, t2) is still a COI.

If a COI remains so after the above filtering using the sign checking on the Bernstein

coefficients of F(u, t) and Ft(u, t), we further process this interval by checking the

collision status of the two ellipsoids at t̃ = (t1 + t2)/2. If the two ellipsoids are separate

at t̃, the two mixed interval (t1, t̃) and (t̃, t2) will be further processed (Fig. 22(b)). If

the two ellipsoids are overlapping at t̃, we label the two subintervals (t1, t̃) and (t̃, t2)

as COIs (Fig. 22(c)), and process them using the above coefficient filtering operation

recursively. Algorithm 3 gives the detailed steps in handling a COI.

Algorithm 3 COI handling

Input: A candidate overlapping interval (COI) (t1, t2)

if interval width t2 − t1 is sufficiently small then

report (t1, t2) as an OI

else

if F(u, t) = 0 has no loop in (t1, t2) then

report (t1, t2) as an OI . . . Fig. 22(a)

else

t̃← (t1 + t2)/2

if State(t̃) = +1 then

t∗ ← ContactTime(t1, t̃) . . . Fig. 22(b)

t∗∗ ← ContactTime(t̃, t2)

report contact time instants t∗ and t∗∗

label (t1, t∗), (t∗∗, t2) as COIs and

(t∗, t∗∗) as a CSI

else

if State(t̃) = 0 then

report contact time instant t̃

label (t1, t̃), (t̃, t2) as COIs . . . Fig. 22(c)

81



5.3.2 Finding the first contact time only

Many real-time applications of collision detection require only the first contact time to

be computed. Suppose that the two ellipsoids are separate at t = 0, i.e., State(0) = +1.

We then apply Bézier shoots recursively from t = 0, until we encounter the first contact

time. We shall show that this process has quadratic convergence (Section 5.3.3) and is

efficient especially when the motion degree is low.

5.3.3 Quadratic convergence of recursive Bézier shoot

We now show that recursive Bézier shoot in search of a contact time, i.e., a regular

solution (u∗, t∗) of F(u, t) = Fu(u, t) = 0, has quadratic convergence. Without loss of

generality, we may assume that (u∗, t∗) is located at the origin (0, 0), with F(u, t) = 0

and Fu(u, t) = 0 as shown in Fig. 23. Then, by the regularity assumption and Implicit

Function Theorem, the solution of F(u, t) = 0 can be represented locally at (0, 0) by

Taylor expansion t = αu2 + o(u2), and the solution of Fu(u, t) = 0 by u = kt + o(t).

Now consider a Bézier shoot from t0. The solution of Fu(u, t0) = 0 is û = kt0 + o(t0).

So the first root of F(û, t) = 0 is

t1 = αû2 + o(û2) = α[kt0 + o(t0)]2 + o(t2
0) = αk2t2

0 + o(t2
0).

It follows that t1/t2
0 = αk2 + o(1). Hence, recursive Bézier shoot has quadratic conver-

gence. But if (u∗, t∗) is a singular solution representing tangential contact of the two

ellipsoids, then the convergence is in general linear.

5.4 experimental results

We have tested our method in two applications to demonstrate its robustness and

effectiveness. The first one features a human character animation in which two virtual

human characters bounded by ellipsoids move in a sequence of frames. We determine

the first contact instant of the characters in between every two consecutive frames. The
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Figure 23: Quadratic convergence of recursive Bézier shoot.

motion of each ellipsoid is obtained by interpolating its orientations and positions

at two consecutive frames. Both rigid and affine motion interpolation are tested and

the performance in both cases are evaluated. In the second experiment we perform

collision detection between a robotic arm moving with pre-specified rigid motion and

a stationary obstacle. Continuous collision detection is applied among the bounding

ellipsoids of the links of the robotic arm and the obstacle, and all collision time intervals

are reported.

5.4.1 Test in human character animation

To test the efficiency of our method, we use two virtual boxers performing action

in close proximity of each other, as shown in Fig. 24. The first contact instant in

each time interval [ti, ti+1] is to be determined, where the ti are the time instants of

each animation frame. Each character is bounded tightly by 20 ellipsoids, enclosing

different body parts such as heads, limbs, etc. The motions of the two boxers are

driven by motion capture data, together with a simple control mechanism. Between

every two consecutive frames, the collision detection algorithm is applied to 400 pairs

of ellipsoids, formed by picking one ellipsoid from each of the characters. We do not

consider self-collision here, which can easily be dealt with by taking into account the

pairwise CCD of non-adjacent ellipsoids of the same character.

Two fast and simple culling techniques are first used to quickly eliminate unlikely

colliding pairs of ellipsoids. For each pair of moving ellipsoids, we first test whether
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Figure 24: Real-time continuous collision detection in a boxing game. Ellipsoids in
collision are highlighted in red.

their bounding spheres collide. The bounding spheres assume linear translation

between the end positions of the ellipsoids. The moving spheres are guaranteed to

bound the ellipsoids with the interpolating motions described in the next paragraph.

To test whether the bounding spheres collide, we formulate a simple squared distance

function d(t) = |c1(t) − c2(t)|2 − (r1 + r2)2 < 0, t ∈ [0, 1], of two spheres, where

c1(t), c2(t) are the sphere centres and r1, r2 are the sphere radii. Then, two moving

spheres are collision-free in [0, 1] if and only if d(0) > 0 and d(t) has no real roots in

[0, 1]. The bounding spheres test is very efficient—it takes only 1.5 µsec per test and

can filter out a large number of trivially non-collision cases, i.e., when the ellipsoids

are far apart.

If the bounding spheres collide, we further apply a separating-plane method to

further eliminate the remaining easy cases of non-colliding ellipsoids. We compute

a plane that separates the two ellipsoids [73] at the beginning of the time frame, and

then test whether the two moving ellipsoids are continuously separated by the plane

during the whole frame period. We assume that the separating plane is under the

same motion as one of the ellipsoid, say B(t), so that it is always separate from B(t) in
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[0, 1]. The collision test is now between A(t) and the moving plane P(t), which are

then transformed so that A(t) becomes the unit sphere at the origin and P(t) becomes

P ′(t); A(t) and P(t) collide if and only if the distance from the origin to P ′(t) is less

than 1, which can also be determined algebraically as in the bounding sphere test. The

separating plane test involves also a static collision detection of the ellipsoids at t = 0,

and hence can identify trivial collision cases where the ellipsoids overlap at t = 0.

A total of 1,000 frames are processed for the boxing sequence. A continuous rigid

motion is used for interpolation between every two consecutive frames; the center

positions of the ellipsoids are linearly interpolated and the orientations are interpolated

by a linear quaternion curve, producing a rotation matrix of rational degree 2. As a

result, 400,000 pairs of moving ellipsoids were tested, out of which 93.8% of the pairs

were filtered out by the sphere test, and 34.1% and 62.6% of the remaining pairs were

determined as colliding or collision-free at t = 0 using separating planes as witnesses.

For the remaining 780 pairs (0.195%), we applied the algorithm from Section 5.3.2 that

computes the first contact point in continuous collision detection. Of these, 742 were

collision-free and 38 were in collision. Since only the first contact time is needed, we

also maintain an upper bound, t, on the contact time, which is the minimum of all the

first contact time that have been computed so far. Subsequent CCD is only determined

within the interval [0, t]. Including all the above procedures and the generation of

interpolating motions MA(t) and MB(t) for 40 ellipsoids, the average time for collision

detection for each frame took 1.33 msec, in which 400 pairs of moving ellipsoids were

handled. A total of 40 motion matrices were generated in 195 µsec. The formulation

of the bivariate function F(u, t) takes considerable computation. However, this is

needed only when the ellipsoids are in close proximity, when both the sphere test and

separating plane test fail to declare separation. The first row of Table 5 summarizes the

average and the worst case running time for all pairwise CCD tests. The performance

for the close proximity cases is also presented.

Using a rigid motion of ration degree 2 as motion interpolant, the degree of the CCD

equation F(u, t) is 28 in t. In Section 5.2 we describe an affine motion interpolation

which approximates the relative motion between two moving ellipsoids, and results

in a CCD equation of degree 6 on t. In order to compare properly the performance

of our CCD method with the two different motions, the separating plane test which
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Table 5: Average CPU time taken for CCD of two virtual human characters in a boxing
animation.

τfrm
(ms)

τmot
(ms)

τe
(µs)

τf
(µs)

τc
(µs)

τw
(µs)

Rigid motion, setup 1
∗

1.33 0.20

over all 400K pairs 2.8 2.5 17.8 73.9
over 780 close pairs∗∗ 55.2 54.7 65.4 73.9

Rigid motion, setup 2
∗

1.90 0.20

over all 400K pairs 4.2 4.0 13.8 100.1

Affine motion, setup 2
∗

1.19 0.13

over all 400K pairs 2.6 2.5 6.6 39.4

τfrm represents the average time per frame; τmot for constructing the interpolating motion; τe,
τf, τc represent the average time for pairwise CCD of all ellipsoids, collision-free ellipsoids,
and colliding ellipsoids, respectively; and τw is the worst case running time for all 400K
pairwise CCDs.
∗Setup 1—with sphere and separating plane tests, CCD over [0,t]

Setup 2—with sphere test only, CCD over [0,1]
∗∗where both sphere and separating plane tests fail to declare separation

depends on the interpolating motion is not used and all CCD computations are carried

out in the time interval [0,1], i.e., the upper bound t of the first contact time is not

maintained, since t varies with different motions. The performance of our CCD method

with the two motion interpolations is shown in the second and third rows of Table 5.

The average time per frame has a significant 37.6% speed-up using the proposed

affine motion interpolation, due to the more efficient motion construction and a CCD

computation of a much lower degree. In our experiment, both motion interpolations

gave the same collision result of whether a pair of ellipsoids collide or not. Not

accounting those pairs with first contact at t = 0, the differences between the first

contact time of the ellipsoids with affine motion interpolation and that with rigid

motion interpolation have an average, standard deviation and maximum of 0.008, 0.03

and 0.49, respectively. We notice that the differences in the order of the maximum value

occurs only in extreme cases; neglecting the maximum value gives an average, standard

deviation and maximum of 0.006, 0.01 and 0.14, respectively. When using affine motion

interpolation to achieve low degree polynomial computation and therefore a more

efficient collision detection, significant deviation from the rigid motion may occur due

to the affine approximation that varies the sizes of the ellipsoids.
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(a) (b)

(c) (d) (e)

Figure 25: (a) An F3 robotic arm and an I-shaped obstacle; (b) the bounding ellipsoids;
(c), (d) & (e) the robotic arm in motion with t = 0.104, 0.311 and 0.778,
respectively, and the colliding ellipsoids are shown in red.

5.4.2 Test in robotic arm movements

In our second experiment a CRS F3 robotic arm collides with an I-shaped obstacle. The

robotic arm assumes a pre-defined rigid motion and is tightly bounded by 10 ellipsoids

(0-9) and the obstacle by 3 ellipsoids (U,V,W) (Fig. 25). We perform 30 pairwise collision

tests using our algorithm to find all the collision time intervals between the robotic

arm and the obstacle. The motion of the robotic arm is designed in such a way that

the three joints of the arm rotate with degree-2 rational motions and hence the fingers

move with degree-6 rational motions. The total time for processing all 30 pairs of

ellipsoids is 43.8 msec. Note that the time needed for collision detection in general

depends on the motion degree as well as the complexity of the zero set of the CCD

equation. The degree of F(u, t) in t, the time taken for obtaining F(u, t) and that for

solving the CCD for each pair of ellipsoids are summarized in Table 6.
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Table 6: Average CPU time taken for CCD of a robotic arm and an obstacle.

Degree Time (msec) Collision
Motion F(u, t) in

t
Obtain
F(u, t)

Solve
CCD

Total intervals
in [0, 1]

U-0 0 0 0.045 0.077 0.122 -
U-1 2 32 0.272 0.125 0.397 -
U-2 2 32 0.272 0.130 0.402 -
U-3 2 32 0.272 0.126 0.398 -
U-4 4 64 0.813 0.838 1.651 -
U-5 4 64 0.812 0.256 1.068 -
U-6 6 96 1.612 1.642 3.253 -
U-7 6 96 1.676 0.338 2.014 -
U-8 6 96 1.680 0.356 2.036 -
U-9 6 96 1.684 1.498 3.181 -
V-0 0 0 0.045 0.076 0.122 -
V-1 2 32 0.272 0.126 0.397 -
V-2 2 32 0.272 0.131 0.402 -
V-3 2 32 0.272 0.125 0.397 -
V-4 4 64 0.813 0.860 1.673 -
V-5 4 64 0.812 0.881 1.693 -
V-6 6 96 1.612 1.591 3.203 -
V-7 6 96 1.676 0.052 1.729 -
V-8 6 96 1.680 1.505 3.186 -
V-9 6 96 1.683 1.545 3.228 -

W-0 0 0 0.045 0.077 0.122 -
W-1 2 32 0.272 0.127 0.399 -
W-2 2 32 0.272 0.130 0.402 -
W-3 2 32 0.272 0.126 0.398 -
W-4 4 64 0.812 0.859 1.671 -
W-5 4 64 0.813 0.827 1.641 -
W-6 6 96 1.612 0.075 1.687 [0.311,0.677]
W-7 6 96 1.677 0.085 1.762 [0.104,0.323],

[0.778,0.943]
W-8 6 96 1.680 1.506 3.186 -
W-9 6 96 1.684 0.261 1.945 [0.451,0.538]
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5.4.3 Two further examples

We present two more examples to test the accuracy of our method and its efficiency in

the case of general affine motions.

Example 5.1. Consider the two moving ellipsoids A(t) : x2

4 + y2

16 + z2

4 = 1 and B(t) : x2 +
y2

9 + z2

16 = 1 under rigid motions with the following degree-2 rotations (RA(t), RB(t))

and degree-3 translations (TA(t), TB(t)):

RA(t) =
1

EA(t)


−(8t2 − 8t + 1) −2(2t− 1) 2(2t− 1)

2(2t− 1) 1 2(2t− 1)2

−2(2t− 1) 2(2t− 1)2 1



RB(t) =
1

EB(t)


√

2(t− 1)(3t− 1) 2t(2t− 1)
√

2(t− 1)2

√
2(2t− 1) −2t(t− 1)

√
2(2t− 1)2

−
√

2t(3t− 2) 2(2t− 1)(t− 1)
√

2t2


where EA(t) = 8t2− 8t + 3, EB(t) = −2(3t2− 3t + 1) and TA(t) =

(
− 8t3 + 24t2− 6t−

2,−24t3 + 24t2 + 6t− 6,−32t3 + 48t2 − 12t− 2
)T , TB(t) =

(
(72− 24

√
2)t3 + (−156 +

72
√

2)t2 + (114 − 72
√

2)t − 27 + 24
√

2, 12t − 6, (88 − 24
√

2)t3 + (−168 + 72
√

2)t2 +

(114 − 72
√

2)t − 26 + 24
√

2
)T . These motions are designed so that the ellipsoids

have their first contact at t0 = 1/2. The degree of F(u, t) in t is 34 and our algorithm

reports contact at t = 0.5 with an error in the order of 10−8. The whole computation

took 0.7 msec and extracted two overlapping intervals.

Example 5.2. In Fig. 26, two ellipsoids are in motions of degree 4 with rather large affine

deformations. Here, the degree of F(u, t) in t is 48 and it took 2.7 msec to compute all

the four overlapping intervals using the algorithm presented in Section 5.3.1. Detection

of the first contact time takes 0.6 msec.

5.5 discussion

According to the operation counts, our approach requires about 20%∼30% more

arithmetic operations than the OBB overlap test [21] and even more operations than
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Figure 26: Two moving ellipsoids under degree-4 dependent motion with affine de-
formations, the CCD equation F(u, t) = 0 is of degree 48 in t and four
overlapping intervals are detected.

other tests such as spheres, AABBs, k-DOPs, and LSSs. Thus the ellipsoidal CCD

should be applied to special cases where ellipsoids provide tighter fit to freeform

objects, possibly undergoing deformations that can locally be approximated by affine

deformations. To this end, the recent trend in 3D modeling for the next generation

GPU architecture [6, 34] is quite promising, where 3D shapes are directly represented

using parametric surfaces to alleviate the bottleneck of bus bandwidth. As indicated

by the Dupin indicatrix of a surface, convex parts of surfaces can be tightly fit with

ellipsoids. Exact contact time and contact point of two ellipsoids would provide good

initial solutions for further processing of the underlying parametric surfaces.

The other method based on the subresultant sequence of f(λ) that we introduced

in Section 4.5 for determining separation of two static ellipsoids can also be extended

to deal with moving ellipsoids. In this case, the subresultant sequence is a set of

polynomials in terms of the time parameter t. For a rigid motion of rational degree 2,

the degree of the last polynomial in the sequence (4.2), i.e., the resultant of f(λ) and

f′(λ), can be as high as 108. Hence, the approach described in this chapter is more

robust in handling motions of higher degrees. The subresultant method, however, can

be used to solve collision detection of moving composite quadric models (Chapter 6),

in which internal tangencies of quadric surfaces will also be considered.
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6
C O M P O S I T E Q U A D R I C M O D E L S

In this chapter, we develop algebraic methods for efficient and accurate continuous

collision detection (CCD) of composite quadric models, or CQMs for short. A CQM

may be produced with any surface modeling procedure; a commonly used one is the

CSG (Constructive Solid Geometry) construction. A CSG construction is a binary tree

in which every internal node is a Boolean expression w = u ◦ v, where w is a CSG

object resulting from a Boolean combination of its children u and v. Here, u, v are

either subtrees representing intermediate CSG objects or leaf nodes representing CSG

primitives. The three basic CSG operators are union (∪), intersection (∩), and difference

(\). All other boolean operations can be broken down into a composition of these basic

operations. Figure 27 shows the collision between an ellipsoid and a CSG object which

is the difference between an ellipsoid and a cylinder.

Figure 27: Collision detection of an ellipsoid and a CSG object.

A CQM is bounded by boundary elements; a boundary element of a CQM is a face (i.e., a

planar or quadric surface patch), an edge (i.e., a curve segment) or a vertex (i.e., a point);

here an edge is the intersection curve of two adjacent boundary surface patches. We
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call the complete quadric surface or algebraic curve containing a boundary element an

extended boundary element. To simplify our discussion, quadrics are assumed to include

planes, and conics to include lines as a special case. The extended boundary element

of a vertex is the vertex itself.

Two moving CQMs Q1(t) and Q2(t), where t is a time parameter in the interval

[t0, t1], are said to be collision-free, if the intersection of Q1(t) and Q2(t) is empty for all

t ∈ [t0, t1]; otherwise, they are said to collide. Our goal is to determine whether the two

CQMs are collision-free or not; if they collide, their first contact time instant in [t0, t1]

and the contact point will be computed.

Consider two moving CQMs that are separate initially. For collision detection, we

need to determine the time when the two CQMs first have an external contact. Two

CQMs may contact each other at a pair of boundary elements of the following basic

types: (F, F), (F, E), (E, E) and (F, V), where F, E and V stand for face, edge and

vertex, respectively. Other contact types, such as (E, V), are encompassed in the above

four basic types. Therefore, we need to perform CCD of pairs of boundary elements of

the four types in order to accomplish CCD of the two input CQMs. Clearly, the contact

configurations for CQMs are more complex than, for example, the simple case of two

ellipsoids, where a contact point is always of the type (F, F).

Whereas the boundary curves of a CQM are in general degree four intersection

curves of two quadrics, we shall focus on CCD of the important class of CQMs whose

boundary curves are conics sections or straight lines, because such objects are widely

used in practice and their special properties allow them to be processed for collision

detection more efficiently than general CQMs. Hence, by assumption, we suppose for

the moment that all edges, i.e., the boundary curves of a CQM, are conic segments,

including straight line segments as a special case.

6.1 key ideas

Because CQMs are semi-algebraic varieties (i.e., defined by multiple inequalities) and

their boundary elements are often just finite pieces on a quadric surface or a conic

section, it is difficult to process them using algebraic methods in a direct manner. We
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circumvent this difficulty using an approach consisting of the following two major

steps: 1) contact computation; and 2) contact verification.

The first step uses algebraic methods to compute, for each pair of boundary elements,

the contact point between their extended boundary elements, i.e., the complete containing

quadrics or conics containing the boundary elements. If there is a contact detected

between these extended boundary elements, then the contact point may or may not

lie on the corresponding boundary elements of the input CQMs. See, for example,

the two tangency points between the moving ellipsoid and the cylinder in Figure 27.

Therefore we need in the second step to verify whether a contact point reported in the

first step is indeed a contact point between the original CQMs.

Step 1 – Contact Computation: We use an example of two moving capped elliptic

cylinders as shown in Figure 28 to illustrate the main idea. A capped elliptic cylinder

Q is a CQM comprised of a cylinder C and two elliptic disks at the two ends. The

extended boundary elements of a capped cylinders include a cylinder, two planes and

two ellipses. Given two moving capped elliptic cylinders QA(t) and QB(t), we may

treat QA(t) as if it is static, thus denoted as QA, and that QB(t) moves relative to QA.

For CCD of the two capped cylinders, taking all possible combinations of extended

boundary elements, we need to consider 17 CCD subproblems, which are classified

into three cases: (1) one CCD subproblem of a cylinder versus a cylinder (type (F, F),

Figure 28a); (2) twelve CCD subproblems of a cylinder versus an ellipse or an ellipse

versus a plane (type (F, E), Figure 28b & c); (3) four CCD subproblems of an ellipse

versus an ellipse in 3D (type (E, E), Figure 28d). There are some combinations of

boundary elements for which we do not consider as subproblems, e.g., plane vs. plane,

for reasons that will be discussed later in Section 6.2.1.

To explain the step of contact computation, we discuss briefly how some of the above

cases can be handled. For case (1), suppose that the equations of the moving cylinders

CA(t) and CB(t) are given by XT A(t)X = 0 and XT B(t)X = 0, respectively. The

matrices A(t) and B(t) are singular and are of rank 3. The characteristic polynomial

f(λ; t) = det(λA− B(t)) is therefore quadratic in λ. Similar to our work on ellipsoids,

we can first establish the connection between the contact of the cylinders and the roots

of f(λ; t) = 0 and then use it to devise a CCD algorithm for two cylinders. It can be
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(a) (b)

(c) (d)

Figure 28: CCD subproblems for two capped cylinders.

shown that at the contact time t0 the equation f(λ; t0) = 0 has a multiple root λ0, and the

contact point V0 is given by a nontrivial solution of the equation (λ0 A− B(t0))V = 0,

where by assumption the coefficient matrix λ0 A− B(t0) is singular.

In case (2), let us only consider CCD of a cylinder and an ellipse. Without loss of

generality, assume that only the cylinder C(t) moves and the ellipse E is static. Let Π

be the plane containing E . Let EΠ(t) be the cross-section of C(t) in the plane Π. Then,

the CCD problem is reduced to one between two ellipses E and EΠ(t) in the 2D plane

Π, which again can be solved with the algebraic approach.

Now, for case (3), if the two ellipses are contained in the same plane, then it is a

CCD problem for two ellipses in 2D, and it is done. Otherwise, the containing planes

of the two ellipses intersect in a line in 3D (projective space). Each ellipse cuts the line

in an empty interval or one closed interval. Therefore, the CCD subproblem is reduced

to one between two moving intervals in a line (i.e., a 1D space), which can be treated

algebraically, by regarding the intervals as “low-dimensional” ellipses.
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The basic idea depicted above can be extended and applied to more general CQMs

with conic boundary curves. Essentially, we use a dimension reduction technique to

reduce the CCD of extended boundary elements to CCD of quadrics or conics in

different dimensions so that they can be resolved algebraically. Hence, we are able to

find the contact points and contact times between extended boundary elements of two

moving CQMs. We will discuss this step in more details in the next section.

Step 2 – Contact Verification: We will use the CSG construction tree to explain the

idea of contact verification. Other boundary surface representation may entail different

procedures for contact points verification, but the idea is essentially the same. Suppose

that p has been reported as a contact point between two extended boundary elements of

two CQMs QA(t0) and QB(t0) at time t0. It suffices to consider the three basic Boolean

operations, since all other CSG operations can be described as their compositions. Let
◦
u = “p is in the interior of u” and ∂u = “p is on the boundary of u” be two Boolean

predicates. For each internal node associated with a CSG object w, we will evaluate
◦
w

and ∂w recursively using the following rules (see Figure 29 for the 2D analogy):

Case w = u ∪ v :
◦
w↔ ◦

u ∨ ◦v,

∂w↔ (∂u ∧ ∂v) ∨ (∂u ∧ ¬◦v) ∨ (¬◦u ∧ ∂v)

Case w = u ∩ v :
◦
w↔ ◦

u ∧ ◦v,

∂w↔ (∂u ∧ ∂v) ∨ (
◦
u ∧ ∂v) ∨ (∂u ∧ ◦v)

Case w = u \ v :
◦
w↔ ◦

u ∧ ¬(
◦
v ∨ ∂v),

∂w↔ (∂u ∧ ∂v) ∨ (∂u ∧ ¬◦v) ∨ (
◦
u ∧ ∂v)

Whether or not a point is inside or on the boundary of a quadric CSG primitive can

be checked using the equation of the quadric. The answer to whether p is on the

boundary surface of QA(t0) is then given by the truth value of the predicate ∂QA(t0)

evaluated at the root node of the CSG tree of QA(t0). Similarly, we can check if p is on

∂QB(t0).
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Figure 29: Contact verification for CSG objects. Given two objects u and v, and the
result w of applying a boolean operation to u and v, the boundary and
interior of w, denoted by ∂w and

◦
w, respectively, can be determined from

∂u,
◦
u, ∂v and

◦
v accordingly.

6.2 the algorithm

Given two moving CQMs A(t) and B(t), t ∈ [t0, t1], we shall solve the CCD of the

CQMs as follows:

1. Identify the subproblems, each of which is a CCD between two extended bound-

ary element, one from each of A(t) and B(t).

2. For each subproblem,

a) Depending on the subproblem type, solve CCD of the extended boundary

element pair using appropriate algebraic techniques, and thereby obtain the

candidate contact time instants (contact computation).

b) Find the first valid contact time instant with a corresponding contact point

for the pair (contact verification), if there are any.

3. Based on the CCD results of all the subproblems, determine the first contact time

instant and the corresponding contact point for A(t) and B(t).

Contact verification has been described in Section 6.1. The details for the steps for

identifying subproblems and CCD by dimension reduction will be discussed in the

following subsections.
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6.2.1 Subproblems identification

In general, we will need to solve the CCD problem of each pair of boundary elements,

each from one of the two CQMs A and B, if the pair should fall into one of these types:

(F, F), (F, E), (E, E) and (F, V), where F, E and V stand for face, edge and vertex,

respectively. We notice that while a CQM is formed by boolean operations of primitive

objects (which are convex for quadric primitives,) the difference operator may result in

boundary elements that are concave (for example, the surface element resulting from an

ellipsoid minus a cylinder in Fig. 27.) We have the following definition for a concave

boundary element of a CQM:

Definition 6.1. A face of a CQM is said to be concave if it possesses a negative principal

curvature everywhere on the face. An edge of a CQM is said to be concave if the edge

e lies on a planar face f and any line connecting any two points of e is not contained in

f .

Example 6.1. Figure 30 shows two CQMs in which (a) is a ring constructed by subtract-

ing a cylinder from an ellipsoid; and (b) is a wedge formed by subtracting a half space

and a circular cylinder from an elliptic cylinder. The faces FA,2 and FB,2 are concave

faces, while the edges EB,3 and EB,4 are concave edges.

(a) (b)

Figure 30: Two CQM objects.

Now with the concave face and concave edge of a CQM defined, we may eliminate

some pairwise CCD which certainly will not capture any valid contact point of the
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CQMs in question. The rules are applied as follows:

Subproblem exclusion rule

For F-F pair: Pairwise tests between concave/planar face and concave/planar face are

excluded. Obviously, concave face and concave/planar face cannot contain

any valid touching point. On the other hand, a plane of a CQM must be

delimited by a boundary curve of type E. Hence, a plane/plane touching

could be found by CCD of a plane and the boundary curve of the other

plane.

For F-E pair: Pairwise tests between concave face and concave edge are excluded.

Again, this boundary element pair should contain no valid touching point.

Example 6.2. The CCD subproblems that need to be considered for the two CQM objects

in Fig. 30 are as follows:

• F-F — {FA,i}× {FB,j}, i = 1, 2, j = 1, . . . , 4, excluding (FA,2, FB,2), (FA,2, FB,3) and

(FA,2, FB,4).

• F-E — {FA,i} × {EB,j}, i = 1, 2, j = 1, . . . , 6, excluding (FA,2, EB,3), (FA,2, EB,4);

and {EA,i} × {FB,j}, i = 1, 2, j = 1, . . . , 4.

• F-V — {FA,i} × {VB,j}, i = 1, 2, j = 1, . . . , 4.

• E-E — {EA,i} × {EB,j}, i = 1, 2, j = 1, . . . , 6.

6.2.2 Contact computation

For each pair of extended boundary elements Ai(t) and Bj(t) of the CQMs A(t) and

B(t), respectively, our next step is to solve CCD and compute the first contact time

instant and the corresponding contact point. As mentioned in Section 6.1, we adopted

a dimension reduction technique to deal with CCD of boundary elements of different

types. First of all, we introduce the direct substitution method to deal with CCD of two

extended boundary elements, when one element is a a quadric or a conic, and the

other is a line or vertex. Then, we will proceed to describe how the subproblems of

different types could be solved.
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Direct substitution method

The direct substitution method checks if a line touches a quadric or a conic, or a vertex

is on a quadric or a conic (both elements being in R3 or R2), by substituting the line

(expressed in parametric form) and the vertex into the quadric/conic equation.

SupposeQ(t) : XTQ(t)X = 0 is a quadric surface or a conic curve and L(s; t) is a line

in R3. We simply substitute L(s; t) into Q(t) and obtain g(s; t) = L(s; t)TQ(t)L(s; t)

which is a quadratic polynomial in s. The contact time instants of Q(t) and L(s; t) are

then given by the roots of the discriminant ∆g(t) of g(s; t).

For CCD of Q(t) with a vertex, we obtain the equation vT(t)Q(t)v(t) = 0 whose

roots correspond to the contact time instants. This is also applicable when Q(t) is a

plane.

When the two elements are a plane and a line, the direct substitution method is not

appropriate since it will determine an intersection of a plane and a line, while for the

purpose of CCD, we seek a touching configuration where a line should lie on the plane.

In this case, a different handling will be needed.

Face vs. face (F-F)

• Quadric vs. Quadric

Since all quadric surfaces are projectively equivalent and that the multiplicity

of roots of the characteristic polynomial is projectively invariant, Theorem 4.1

regarding the correspondence between a double root and tangency between

two ellipsoids can easily be extended to apply to other quadric surfaces as well.

However, unlike ellipsoids, the interior of a general quadric surface Q : XTQX =

0 may not be well-defined. Here, we adopt the convention that the “interior” of

Q is defined with respect to the CQM object to which Q belongs, so that a point

X0 in the interior of the CQM should give XTQX < 0. Then, we seek the external

tangency of Ai(t) and Bj(t) with respect to the CQM which always results in a

negative double root of the characteristic equation f(λ; t) = 0. This applies also

to the case of CCD between two conics, by extending Theorem 2.6 regarding the

external tangency of two ellipses with a projective consideration.
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As we have explained earlier, there is always a double root in the characteristic

equation f(λ) of two spheres corresponding to an imaginary contact point. Now,

consider the case when we are dealing with the CCD of two spheres, both being

the extended boundary elements of some CQMs. Then, the discriminant ∆f(t)

will be a zero function throughout t ∈ [0, 1], and we cannot extract the possible

genuine touching of the two spheres merely from ∆f(t) = 0. In fact, this happens

not only for two spheres, but also for any two quadrics whose intersection is

reducible. Hence, we make use of the subresultant sequence to detect possible

touching moments of two quadrics.

Given two quadric surfaces Ai(t) : XT Ai(t)X = 0 and Bj(t) : XT Bj(t)X = 0 in

R3, we set up the characteristic polynomial f(λ; t) = det(λAi(t)− Bj(t)). We

then compute the subresultant sequence P(t) similarly as in (4.2) described in

Section 4.5, which is given by

P(t) = f(λ; t), f′(λ; t), sr2(λ; t), sr1(λ; t), res
(
f(λ; t), f′(λ; t)

)
(6.1)

For degenerate quadrics such as cones and cylinders, the degree of f(λ; t) is

smaller than 4, and the subresultant sequence P(t) consists of fewer polynomials.

We first look for tangency (both internal and external) of Ai(t) and Bj(t), by

determining the zeros of the first non-zero function in P(t) in reverse order.

For example, if res
(
f(λ; t), f′(λ; t)

)
6≡ 0, its zeros become the candidate contact

moments t’s. Otherwise, we compute the zeros of sr1(λ; t) 6≡ 0 as the required t’s.

Next, those t’s such that f(λ; t) = 0 have no negative multiple roots correspond

to internal touching and are therefore rejected. For each of the remaining t’s,

we determine a candidate contact point p which is the solution of
(
λAi(t) −

Bj(t)
)
X = 0. The point p is where Ai(t) and Bj(t) share a common tangent

plane, and it is not necessarily a “genuine” touching point for the purpose of

collision detection. Hence, we should also check the contact configuration of

Ai(t) and Bj(t). Furthermore, two quadrics may have internal tangency at a

single point, two distinct points, or along a conic curve. We shall further discuss

these issues in relation to CCD of general quadrics in section 6.3.
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• Quadric vs. Plane

A plane P(t) : P(t)TX = 0 will be treated as a degenerate quadrics Q(t) :

XTQ(t)X = 0 where Q(t) = P(t)P(t)T , and the CCD in this case can be solved

in the same way as that between two quadrics described above.

Face vs. edge (F-E)

• Quadric vs. conic

Given a quadric surface Q(t) : XTQ(t)X = 0 and a conic curve C(t) : XTC(t)X =

0 in R3 with a containing plane ΠC(t), we reduce the CCD problem of Q(t)

and C(t) to a CCD problem in R2. This is done by considering the conic curve

U (t) which is the intersection of Q(t) with ΠC(t). The CCD is then carried out

between C(t) and U (t) in R2. The characteristic polynomial and discriminant

function are set up, and the roots of ∆(t) = 0 are computed. Each root t0 will

then be checked to see if U (t0) is imaginary, or that t0 corresponds to an internal

contact; in both cases t0 will be rendered invalid.

• Plane vs. conic

Given a plane P(t) : P(t)TX = 0 and a conic curve C(t) : XTC(t)X = 0 in R3

with a containing plane ΠC(t), we consider the line L(s; t) (in parametric form)

which is the intersection of P(t) and ΠC(t). Then we solve the CCD of L(s; t) and

C(t) in R2 using direct substitution. Again, a root ti which gives an imaginary

line L (or equivalently P ‖ ΠC(t)) will be rejected.

• Quadric vs. line

This is solved using the direct substitution method.

• Plane vs. line

Given a plane P(t) : P(t)TX = 0 and a line L(s; t) in R3, we determine, for the

purpose of CCD of two CQMs, the time instants at which L(s; t) lies on P(t).

We substitute L(s; t) into P(t) and obtain g(s; t) = L(s; t)T P(t) which is a linear

polynomial in s. Let g(s; t) = α1(t)s + α0(t). The line L(s; t) lies on P(t) if and

only if g(s; t) ≡ 0. Hence, the contact time instants are the common roots of

α0(t) and α1(t), which can be computed by solving both α0(t) and α1(t) directly.
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We may also set up the Sylvester resultant [64], Rest(α0, α1), of α0(t) and α1(t)

and solve for the roots of Rest(α0, α1). This latter method, however, requires the

treatment of the Sylvester resultant which is a polynomial of much higher degree

in t.

Face vs. vertex (F-V)

• Quadric surface / plane vs. vertex

This is done by direct substitution.

Edge vs. edge (E-E)

• Conic curve vs. conic curve

In this case, we will reduce the CCD problem of two conic curves in R3 to a 1D

CCD problem in R as in the case for solving CCD of ellipses moving in the space

as described in Chapter 3.

• Conic curve vs. line

This is solved by direct substitution.

• Line vs. line

Two lines L1(s; t) = u1(t) + sv1(t) and L2(w; t) = u2(t) + wv2(t) intersect if

and only if v1(t), v2(t) and u2(t)− u1(t) are coplanar. Hence, we solve for the

roots of det[v1(t), v1(t), u1(t) − u1(t)] = 0, which corresponds to the contact

time instants of the two lines.

6.3 issues for ccd of general quadrics

6.3.1 Contact configuration

Given two moving quadric surfaces A(t) and B(t), let g(t) be the first non-zero

function in the subresultant sequence P(t) of their characteristic polynomial f(λ; t)

and its derivative as given by (6.1). A root t0 of g(t) does not always correspond to a
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real touching point. Hence, we will need to further check if A(t0) and B(t0) indeed

have real tangency.

We will first solve for the multiple root λ0 of the characteristic equation f(λ) =

det(λA(t0) − B(t0)) = 0. If λ0 ≥ 0, t0 will be rejected since it corresponds to an

internal contact of the two surfaces with respect to the CQMs. Otherwise, we shall

solve for the system (λ0 A(t0)− B(t0))X = 0, whose solution X0 is the contact point of

A(t0) and B(t0).

When two quadric surfaces touch each other (no matter whether it is an internal

touch or an external touch,) the tangency could happen either at a single point, two

distinct points, a straight line or a conic section in C3. We shall show that these cases

can be distinguished by inspecting the rank of (λ0 A(t0)− B(t0)).

Lemma 6.2. Let λ0 be a multiple root of f(λ) = det(λA(t0)− B(t0)) = 0, the characteristic

polynomial of two quadric surfaces A and B. We have the following cases1:

1. If rank(λ0 I − A−1B) = 3, A and B have a single real tangency point in R3.

2. If rank(λ0 I − A−1B) = 2, A and B either have two distinct tangency point, or that

they have tangency along a straight line in C3.

3. If rank(λ0 I − A−1B) = 1, A and B are tangent along a conic curve in C3.

Proof. Case 1: If rank(λ0 I − A−1B) = 3, λ0 is associated with only 1 Jordan block of

size 3× 3 in the Jordan canonical form of A−1B. Then there are a real eigenvector X0

and a generalized eigenvector X1 of A−1B such that

(λ0 I − A−1B)X0 = 0 and (λ0 I − A−1B)X1 = X0,

and hence (λ0 I − A−1B)2X1 = 0. Now,

XT
0 AX0 = [(λ0 I − A−1B)X1]T A[(λ0 I − A−1B)X1]

= XT
1 (λ0 I − A−1B)A(λ0 I − A−1B)X1

= XT
1 A(λ0 I − A−1B)2X1

= 0,

1 Note that rank(λ0 I − A−1B) = rank(λ0 A− B)
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i.e., X0 is a point on A. Similarly, we may show that X0 is a point on B. Since

(λ0 I − A−1B)X0 = 0, we have λ0 AX0 = BX0, and therefore the tangent planes,

XT AX0 = 0 and XT BX0 = 0 of A and B at X0, are identical. Hence, A and B have a

real single tangency point X0 which is the unique solution of (λI − A−1B)X = 0.

Case 2: Suppose that rank(λ0 I− A−1B) = 2, then the null space of A−1B has dimension

2(= 4− 2) and λ0 is associated with two linearly independent eigenvectors X0 and X1,

such that

(λ0 I − A−1B)X0 = 0 and (λ0 I − A−1B)X1 = 0.

Consider the line X(u; v) = uX0 + vX1, u, v ∈ R. A line in general intersects a quadric

in two points (counting multiplicity) in C3, or that the line lies on the quadrics. We first

assume that X(u; v) intersects A at two points. Let X(u; v) for some u, v ∈ R be such

an intersection point on A. Since (λ0 A− B)X0 = 0 and (λ0 A− B)X1 = 0, we have

0 = u(λ0 A− B)X0 + v(λ0 A− B)X1

= (λ0 A− B)X(u; v)

= X(u; v)T(λ0 A− B)X(u; v)

= λ0X(u; v)T AX(u; v)− X(u; v)T BX(u; v)

= −X(u; v)T BX(u; v)

The last equality holds since X(u; v) is on A. Hence, we have shown that X(u; v) is

also on B. Moreover, since λ0 AX0 = BX0 and λ0 AX1 = BX1, we have

λ0 AX(u; v) = λ0 A(uX0 + vX1)

= uλ0 AX0 + vλ0 AX1

= uBX0 + vBX1

= BX(u; v).
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Hence, the tangent planes, XT AX(u; v) = 0 and XT BX(u; v) = 0 of A and B at X(u; v),

are identical, which means that X(u; v) is a tangency point of A and B. On the other

hand, if X(u; v) lies on the quadric surfaces, we may show similarly that every point

on X(u; v) is a tangency point of A and B.

Case 3: If rank(λ0 I − A−1B) = 1, then the null space of A−1B has dimension 3 and λ0

is associated with three linearly independent eigenvectors X0,X1,X2 such that

(λ0 I − A−1B)X0 = 0, (λ0 I − A−1B)X1 = 0, and (λ0 I − A−1B)X2 = 0.

A plane in general intersects a quadrics in a conic section in C3. Now let X(u; v; w) =

uX0 + vX1 + sX2, u, v, s ∈ R be the plane spanned by the eigenvectors X0,X1,X2.

Also, let X(u; v; w) for some u, v, w ∈ R be a point on the intersection conic curve of

X(u; v; w) and A. Then, since (λ0 A− B)X0 = (λ0 A− B)X1 = (λ0 A− B)X2 = 0, we

have

0 = u(λ0 A− B)X0 + v(λ0 A− B)X1 + w(λ0 A− B)X2

= (λ0 A− B)X(u; v; w)

= X(u; v; w)T(λ0 A− B)X(u; v; w)

= λ0X(u; v; w)T AX(u; v; w)− X(u; v; w)T BX(u; v; w)

= −X(u; v; w)T BX(u; v; w).

The last equality holds as X(u; v; w) is on A. Hence, X(u; v; w) is also on B. It means

that A and B share a common intersection curve with the plane X(u; v; w). Now, we

also have

λ0 AX(u; v; w) = λ0 A(uX0 + vX1 + wX2)

= uλ0 AX0 + vλ0 AX1 + wλ0 AX2

= uBX0 + vBX1 + wBX2

= BX(u; v; w).
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Then, the tangent planes of A and B, XTλ0 AX(u; v; w) and XTλ0BX(u; v; w) are

identical at every point X(u; v; w) on the intersection curve. Hence, the two quadrics

A and B are tangent at a conic curve.

Note that Lemma 6.2 gives the touching configuration of A and B in C3, if their

characteristic equation has a multiple root. For CCD of A and B, one should further

check if the contact is in the real space R3.

6.3.2 Tangency occurring on real intersection curves

There are cases in which two quadric surfaces have tangency at some point p in R3, but

however intersect locally in the neighbourhood of p. This happens when the tangency

point lies on some real intersection curve of the quadric surfaces. Figure 31a shows an

example in the case of two cylinders. Now, imagine the case when one of the quadrics

contributes to a concave surface in a CQM, then this touching point is not valid in the

sense that it is not an external contact point for the two CQMs that the quadrics belong

to, since the CQMs in this case intersect locally in R3 in the neighbourhood of the

touching point. This compares to the situation where a touching point is not on any

of the real intersection curve of the quadrics; when one of the quadrics is considered

concave, the touching point will be a valid external contact (Figure 31b).

Definition 6.3. A contact point p of two quadrics A and B is called a genuine contact

point if and only if p does not lie on any real intersection curve between A and B; or

in other words, A and B does not intersect locally in the neighbourhood of p.

By merely looking into the characteristic equation which characterizes the pencil of

two quadrics, we cannot differentiate whether a contact point is genuine or not, i.e,

whether it lies on any real intersection curve of the two quadrics. In this regard, we

make use of the signature sequence [66] to classify the morphology of the intersection

curve. Table 7, 8 and 9 are taken from [66] which show the classification of 35 different

morphologies for the intersection curve of two quadrics (QSIC) in PR3, using the index

sequence and the signature sequence. The illustration of each case shows how a QSIC

looks like: a solid line and a dotted line represents a real and an imaginary intersection

component, respectively, while a tangency point is marked with a circular point.
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Table 7: Classification of QSIC that contain non-planar components in PR3

[Segre]r Real
r = the # Index Signature Sequence Illus- Representative Contact
of real roots Sequence tration Quadric Pair Point

[1111]4

1

〈1|2|1|2|3〉 (1,(1,2),2,(1,2),1,(1,2),2,(2,1),3) A : x2 + y2 + z2 − w2 = 0
B : 2x2 + 4y2 − w2 = 0

2

〈0|1|2|3|4〉 (0,(0,3),1,(1,2),2,(2,1),3,(3,0),4) A : x2 + y2 + z2 − w2 = 0
B : 2x2 + 4y2 + 3z2 − w2 = 0

[1111]2

3

〈1|2|3〉 (1,(1,2),2,(2,1),3) A : 2xy + z2 + w2 = 0
B : −x2 + y2 + z2 + 2w2 = 0

[1111]0

4

〈2〉 (2) A : xy + zw = 0
B : −x2 + y2 − 2z2 + zw + 2w2 = 0

5

〈2oo−2|3|2〉
〈2oo+2|3|2〉

(2,((2,1)),2,(2,1),3,(2,1),2)
(2,((1,2)),2,(2,1),3,(2,1),2)

A : x2 − y2 + z2 + 4yw = 0
B : −3x2 + y2 + z2 = 0

[211]3

6

〈1oo−1|2|3〉 (1,((1,2)),1,(1,2),2,(2,1),3) A : −x2 − z2 + 2yw = 0
B : −3x2 + y2 − z2 = 0

7

〈1oo+1|2|3〉 (1,((0,3)),1,(1,2),2,(2,1),3) A : x2 + z2 + 2yw = 0
B : 3x2 + y2 + z2 = 0

[211]1
8

〈2oo−2〉 (2,((2,1)),2) A : xy + zw = 0
B : 2xy + y2 − z2 + w2 = 0

[22]2
9

〈2oo−2oo−2〉
〈2oo−2oo+2〉

(2,((2,1)),2,((2,1)),2)
(2,((2,1)),2,((1,2)),2)

A : xy + zw = 0
B : y2 + 2zw + w2 = 0

[22]0
10

〈2〉 (2) A : xw + yz = 0
B : xz− yw = 0

[31]2
11

〈1ooo+2|3〉 (1,(((1,2))),2,(2,1),3)
A : y2 + 2xz + w2 = 0
B : 2yz + w2 = 0

[4]1
12

〈2oooo−2〉 (2,((((2,1)))),2)
A : xw + yz = 0
B : z2 + 2yw = 0
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Table 8: Classification of QSIC with only planar components in PR3 - Part I

[Segre]r Real
r = the # Index Signature Sequence Illus- Representative Contact
of real roots Sequence tration Quadric Pair Point

13

〈2||2|1|2〉 (2,((1,1)),2,(1,2),1,(1,2),2) A : x2 − y2 + z2 − w2 = 0
B : x2 − 2y2 = 0

[(11)11]3

14

〈1||3|2|3〉 (1,((1,1)),3,(2,1),2,(2,1),3) A : −x2 + y2 + z2 + w2 = 0
B : −x2 + 2y2 = 0

15

〈1||1|2|3〉 (1,((0,2)),1,(1,2),2,(2,1),3) A : x2 + y2 + z2 − w2 = 0
B : x2 + 2y2 = 0

16

〈0||2|3|4〉
〈1||3|4|3〉

(0,((0,2)),2,(2,1),3,(3,0),4)
(1,((1,1)),3,(3,0),4,(3,0),3)

A : x2 + y2 − z2 − w2 = 0
B : x2 + 2y2 = 0

[(11)11]1

17

〈1||3〉 (1,((1,1)),3) A : x2 + y2 + 2zw = 0
B : −z2 + w2 + 2zw = 0

18

〈2||2〉 (2,((1,1)),2) A : x2 − y2 − 2zw = 0
B : −z2 + w2 + 2zw = 0

[(111)1]2

19

〈1|||2|3〉 (1,(((0,1))),2,(2,1),3) A : y2 + z2 − w2 = 0
B : x2 = 0

20

〈0|||3|4〉 (0,(((0,1))),3,(3,0),4) A : y2 + z2 + w2 = 0
B : x2 = 0

[(21)1]2

21

〈1oo− |2|3〉 (1,(((1,1))),2,(2,1),3) A : y2 − z2 + 2zw = 0
B : −x2 + z2 = 0

22

〈1oo+ |2|3〉 (1,(((0,2))),2,(2,1),3) A : y2 − z2 + 2zw = 0
B : x2 + z2 = 0
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Table 9: Classification of QSIC with only planar components in PR3 - Part II

[Segre]r Real
r = the # Index Signature Sequence Illus- Representative Contact
of real roots Sequence tration Quadric Pair Point

23

〈2oo−2||2〉 (2,((2,1)),2,((1,1)),2)
A : 2xy− y2 = 0
B : y2 + z2 − w2 = 0

[2(11)]2

24

〈1oo−1||3〉 (1,((1,2)),1,((1,1)),3)
A : 2xy− y2 = 0
B : y2 − z2 − w2 = 0

25

〈1oo+1||3〉 (1,((0,3)),1,((1,1)),3)
A : 2xy− y2 = 0
B : y2 + z2 + w2 = 0

[(31)]1

26

〈2ooo− |2〉 (2,((((1,1)))),2)
A : y2 + 2xz− w2 = 0
B : yz = 0

27

〈1ooo+ |3〉 (1,((((1,1)))),3)
A : y2 + 2xz + w2 = 0
B : yz = 0

28

〈2||2||2〉 (2,((1,1)),2,((1,1)),2)
A : x2 − y2 = 0
B : z2 − w2 = 0

[(11)(11)]2

29

〈0||2||4〉 (0,((0,2)),2,((2,0)),4)
A : x2 + y2 = 0
B : z2 + w2 = 0

30

〈1||1||3〉 (1,((0,2)),1,((1,1)),3)
A : x2 + y2 = 0
B : z2 − w2 = 0

[(11)(11)]0

31

〈2〉 (2)
A : xy + zw = 0
B : −x2 + y2 − z2 + w2 = 0

[(211)]1

32

〈2oo− ||2〉 (2,((((1,0)))),2)
A : x2 − y2 + 2zw = 0
B : z2 = 0

33

〈1oo− ||3〉 (1,((((1,0)))),3)
A : x2 + y2 + 2zw = 0
B : z2 = 0

[(22)]1

34

〈2ôo− ôo−2〉 (2,((((2,0)))),2)
A : xy + zw = 0
B : y2 + w2 = 0

35

〈2ôo− ôo+2〉 (2,((((1,1)))),2)
A : xy− zw = 0
B : y2 − w2 = 0
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(a) (b)

Figure 31: Tangency of quadrics with different intersection configuration in the neigh-
bourhood. (a) Touching point lying on the real intersection curves of the two
quadrics. (b) There is no intersection locally at the touching point between
the quadrics. Only (b) will be considered a genuine touching point for CCD
of two quadrics.

We are only interested in those cases where the two quadrics have real contact

(i.e., the 22 cases marked by the last column in the three tables). The index sequence

and the signature sequence are the root characterization of the characteristic equation

f(λ) = det(λA− B) = 0. To facilitate our discussions, we shall first show how these

two sequences should be interpreted 2:

1. Each multiple root λ0 of f(λ) = 0 is associated with a sequence of consecutive

symbols | or o in the index sequence. The multiplicity of λ0 equals the number

of consecutive symbols. In the signature sequence, there is a corresponding pair

of numbers enclosed by a pair of bracket. The number of pairs of brackets used

equals the multiplicity of λ0.

2. The roots of f(λ) = 0 are given by the eigenvalues of A−1B and each eigenvalue

is associated with some Jordan blocks in the Jordan normal form of A−1B. Then

the symbol | denotes a real root associated with a 1× 1 Jordan block, while o is

used for p consecutive times to denote a real root associated with a p× p Jordan

block. Hence, if λ0 is associated with the symbols o o o|, it has two corresponding

Jordan blocks, one is 3× 3 and the other is 1× 1.

2 Here, we try to simplify the interpretation of the two sequences and extract only those important properties
that are related to our later analysis.
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3. The number before the symbols for λ0 characterizes the quadric surface Q(λ0 −

ε) : XT((λ0− ε)A− B
)
X = 0 using the signs of the eigenvalues of (λ0− ε)A− B,

where ε > 0 is a sufficiently small constants. An even number means Q(λ0 − ε)

is a hyperboloid, and an odd number means Q(λ0 − ε) is an ellipsoid. Similarly,

we may characterize Q(λ0 + ε) using the number that comes after the symbols

corresponding to λ0.

4. The two numbers (p, n) within the brackets corresponding to λ0 in the signature

sequence tell the number of positive and negative non-zero eigenvalues of λ0 I −

A−1B, respectively. Hence, if λ0 is associated with (((1, 1))), then λ0 is a triple

root and that λ0 I − A−1B has one non-zero positive and one non-zero negative

eigenvalues.

Consider two quadric surfaces A and B which are in tangency, i.e., f(λ) = det(λA−

B) = 0 with a multiple root λ0. Based on Table 7, 8 and 9 characterizing the index

sequence and signature sequence of A and B, the following procedure determines

whether A and B have genuine contact.

Procedure:

Input: Two quadric surfaces A and B which are in tangency, with f(λ) =

det(λA− B) = 0 having a multiple root λ0.

Output: Whether A and B HAVE or DO NOT HAVE genuine contact.

Step 1: Check the index sequence of A and B.

Let Q(λ) be XT(λA− B)X = 0.

• If Q(λ0− ε) and Q(λ0 + ε) are both ellipsoids for sufficiently small ε > 0,

i.e., the numbers before and after the symbols corresponding to λ0 in the

index sequence are both odd,

– If λ0 is a quadruple root,

report: DO NOT HAVE genuine contact Case 27 (Table 10)

– Else

report: HAVE genuine contact. Cases 6,7,15,24,25,30,33
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• If Q(λ0 − ε) and Q(λ0 + ε) are both hyperboloids for sufficiently small

ε > 0, i.e., the numbers before and after the symbols corresponding to λ0

in the index sequence are both even,

– report: DO NOT HAVE genuine contact Cases 5,8,9,12,13,18,23,26,28,32,35

• If one of Q(λ0 − ε) and Q(λ0 + ε) is an ellipsoid and the other a hyper-

boloid for sufficiently small ε > 0, go to Step 2.

Step 2: Now that one of Q(λ0 − ε) and Q(λ0 + ε) is an ellipsoid and the other a

hyperboloid, for sufficiently small ε > 0;

if rank(λ0 I − A−1B) = 3,

report: DO NOT HAVE a genuine contact Case 11

Otherwise, check the signature sequence:

• If the non-zero eigenvalues of λ0 I − A−1B are of different signs,

report: DO NOT HAVE genuine contact. Case 21

• If the non-zero eigenvalues of λ0 I − A−1B are of the same sign,

report: HAVE genuine contact. Case 22

Step 2 serves to differentiate cases 11, 21 and 22 whose properties are shown in

Table 10.

Table 10: Cases 11, 21, 22 and 27 of the QSIC classification that need special handling
for determining whether a contact point is genuine or not.

Index Signature Sequence Illustration Differentiation
Sequence

11

〈1ooo+2|3〉 (1, (((1, 2))), 2, (2, 1), 3) rank(λ0 I − A−1B) = 3

21

〈1oo− |2|3〉 (1, (((1, 1))), 2, (2, 1), 3)
rank(λ0 I − A−1B) = 2
non-zero eigenvalues of λ0 I −
A−1B are of different signs

22

〈1oo+ |2|3〉 (1, (((0, 2))), 2, (2, 1), 3)
rank(λ0 I − A−1B) = 2
non-zero eigenvalues of λ0 I −
A−1B are of the same sign

27

〈1ooo+ |3〉 (1,((((1,1)))),3) quadruple root

The above procedure requires the testing of whether Q(λ0 ± ε) are ellipsoids or

hyperboloids, which might require determining the eigenvalues of the coefficient
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matrices. It turns out that we have a simple computation scheme, based on the fact

that f(λ′) < 0 if Q(λ′) is an ellipsoid; and f(λ′) > 0 if Q(λ′) is a hyperboloid. We may

then use the Nth derivative test of f(λ) at λ0, and conclude the nature of Q(λ0 ± ε) as

follows. Suppose the fn(λ0) 6= 0 is the first nonzero derivative at λ0:

• If n is even, and that fn(λ0) < 0, then Q(λ0 ± ε) are both ellipsoids.

• If n is even, and that fn(λ0) > 0, then Q(λ0 ± ε) are both hyperboloids.

• If n is odd, then one of Q(λ0 ± ε) is an ellipsoid and the other a hyperboloid.

Example 6.3. The two cylinders A : x2 + z2 = 1 and B : y2 + z2 = 1 have contact

configuration as in Figure 31a. Their characteristic equation is f(λ) = λ(λ− 1)2 and

hence has a double root 1. Now, rank(λ0 A− B) = 2 and (λ0 A− B)X = 0 has two

linearly independent solutions X0 = (0, 0, 1, 0)T and X1 = (0, 0, 0, 1)T . Intersecting the

line uX0 + vX1, u, v ∈ R, with the cylinders yields the two distinct contact points at

(0, 0,±1)T in R3. Furthermore, f′(1) = 0 and f′′(1) = 2. Hence, Q(1± ε) are both

hyperboloids, and by Step 1 of the above procedure, A and B do not have genuine

contact.

6.4 two working examples

Example 6.4. We now solve the CCD of two capped elliptic cylinders A(t) and B(t),

both of the same size (Figure 32). The boundary elements of the cylinders are:

• Face FA,1, FB,1: a cylinder x2

52 + y2

102 = 1, z ∈ [−5, 5].

• Face FA,2, FB,2: a plane z = −5.

• Face FA,3, FB,3: a plane z = 5.

• Edge EA,1, EB,1: an ellipse x2

52 + y2

102 = 1, z = −5.

• Edge EA,2, EB,2: an ellipse x2

52 + y2

102 = 1, z = 5.
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Figure 32: CCD of two capped cylinders.

The motions of A and B are

MA(t) =



1 0 0 −60t + 30

0 1 0 20

0 0 1 0

0 0 0 1


, and

MB(t) =



−2t2 + 2t 0 −2t + 1 −120t3 + 180t2 − 120t + 30

0 2t2 − 2t + 1 0 160t3 − 260t2 + 180t− 50

2t− 1 0 −2t2 + 2t 0

0 0 0 2t2 − 2t + 1


,

respectively. The subproblems that we need to consider are:

• F-F — (FA,1, FB,1)

• F-E — (FA,1, EB,1), (FA,1, EB,2), (FB,1, EA,1), (FB,1, EA,2), (FA,2, EB,1), (FA,2, EB,2),

(FA,3, EB,1), (FA,3, EB,2), (FB,2, EA,1), (FB,2, EA,2), (FB,3, EA,1), (FB,3, EA,2)

• E-E — (EA,1, EB,1), (EA,1, EB,2), (EA,2, EB,1), (EA,2, EB,2)

114



Note that the subproblems for cylinder vs. plane, and plane vs. plane are excluded,

as they are encompassed by the other subproblems. We will now illustrate how CCD of

four of the above subproblems (corresponding to the four cases in Figure 28) is solved.

F-F: (FA,1, FB,1)—cylinder vs. cylinder

Here, the characteristic polynomial f(λ; t) = det(λA(t)− B(t)) is quadratic in λ

and res
(
f(λ; t), f′(λ; t)

)
is of degree 32 in t. They are omitted because of the long

expressions. The roots of res
(
f(λ; t), f′(λ; t)

)
is found to be t0 = 0.5, 0.625, 0.875.

– For t0 = 0.5, we have f(λ; t0) = 0 and the axes of the cylinders are parallel.

Hence, we transform A(t0) and B(t0) by M−1
A (t0) so that the axes are

orthogonal to the xy-plane, and check whether the cross-section ellipses

touch each other on the xy-plane. Now, the characteristic polynomial

f(λ; t0) = −0.0004λ3 − 0.00015λ2 + 0.9375× 10−5λ + 0.9766× 10−7 of the

cross-section ellipses has zeros −0.4284,−0.00912, 0.0625. The ellipses are

separate and hence the cylinders are separate at t = 0.5. Therefore, t = 0.5

is invalid.

– For t0 = 0.625, f(λ; t0) = 0.2822× 10−6λ2 + 0.4496× 10−7λ + 0.1791× 10−8

which has a negative double root λ0 = −0.0796. Hence, the cylinders are

in external touch. The contact point is found to be (−7.5, 10, 0)T (i.e., the

solution of
(
λA(t0)− B(t0)

)
X = 0) and is verified to be a point on both

capped cylinders. Hence, a valid first contact at t = 0.625 is found for the

cylinders and we may skip the other larger roots of ∆f(t) = 0.

F-E: (FA,1, EB,1)—cylinder vs. ellipse

Both (FA,1, EB,1) are transformed to the object space of EB,1 on the xy-plane.

The intersection of the transformed FA,1 and the xy-plane is an ellipse E whose

coefficients are polynomials in t of degree as high as 9. The discriminant of the

characteristic polynomial of E and EB,1 is of degree 32 in t, and the roots are

found to be t0 = 0, 0.6341, 1.

– For t0 = 0, there is no negative double root of f(λ; t0) = 0 and hence t0 will

be rejected. There is, however, a double root equals zero; since E is a line

that does not touch EB,1.
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– For t0 = 0.6341, f(λ; t0) = 0 has a negative double root λ0 = −0.2843. Solv-

ing the system (λ0 A− B)X = 0 yields a single contact point (−6.623, 10.414,

−4.95)T , which can be verified to lie on both truncated cylinders.

F-E: (FA,3, EB,1)—plane vs. ellipse

Both FA,3(= P(t)), EB,1(= E(t)) are transformed to the object space of E(t) on the

xy-plane. The plane P(t), after transformation, is not parallel to nor equivalent to

the xy-plane for all t; it intersects the xy-plane in the line L(s; t) = (10t− 5, s(1−

2t), 0, 4t2 − 4t + 1)T . Substituting L into the ellipse equation yields h(s; t) =

( 1
25 t2 − 1

25 t + 1
100 )s2 − 16t4 + 32t3 − 20t2 + 4t. Solving for the discriminant ∆h(t)

gives the roots t0 = 0, 0.5, 1.

– For t0 = 0, P(t0) is not parallel to nor equivalent to the xy-plane. Solving

h(s; t0) = 0 gives s0 = 0, and the contact point is then given by X0 =

(25,−50, 5)T . Next, we check if X0 is in the elliptic disk on P(t): since

XT
0 E(t)X0 = 49 > 0, X0 is not in the elliptic disk, and hence t0 = 0 is

rejected.

– For t0 = 0.5, P(t0) is parallel to the xy-plane, and t0 is therefore rejected.

– For t0 = 1, P(t0) is not parallel to nor equivalent to the xy-plane. The

contact point is found to be X0 = (−25, 30, 5)T ; however, it is not within the

elliptic disk and t0 = 1 is rejected.

– Hence, P(t0) and E(t0) are collision-free.

E-E: (EA,1, EB,1)—ellipse vs. ellipse

We transform both EA,1(= EA(t)) and EB,1)(= EB(t)) to the object space of EB(t)

on the xy-plane. The containing plane of EA(t) does not equal to the xy-plane

for all t and we proceed to compute the contact. Two 1D ellipses are formed and

the discriminant of their characteristic equation is of degree 24 in t, and the roots

are found to be t0 = 0.5, 0.6342, 0.875, 0.9658.

– For t0 = 0.5, the containing plane of EA(t0) equals the xy-plane; hence,

we check if the two static ellipses E1(t0) : x2/25− y2/100− 2y/5 + 3 = 0

and E1(t0) : x2/400 + y2/1600 + y/80 = 0 are touching at t=0.5. The
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characteristic equation for E1(t0) and E2(t0) have two distinct negative roots,

and therefore, they are separate. The time t0 = 0.5 is thus rejected.

– For t0 = 0.6342, the containing plane of EA(t0) does not equal the xy-plane.

The characteristic equation f(λ) = −0.2860× 10−6λ2 − 0.1991× 10−5λ −

0.3464× 10−5 has a negative double root λ0 = −3.481 and the contact point

is found to be (−6.7084, 10.3668,−5)T .

Final result: Combining the results from the other subproblems, the two capped

cylinders are found to have the first contact at time t = 0.625 between (FA,1, FB,1) at

(−7.5, 10, 0)T (Fig. 33).

Figure 33: First contact of the two cylinders in example 6.4.

Example 6.5. In this example, we solve the CCD for the two CQMs as shown in Figure 30.

The extended boundary elements of the ring (Figure 30a) are:

• Face FA,1: an ellipsoid x2

202 + y2

152 + z2

82 = 1.

• Face FA,2: a cylinder (concave) x2

162 + y2

122 = 1, z = [−24/5, 24/5].

• Edge EA,1: an ellipse x2

162 + y2

122 = 1, z = −24/5.

• Edge EA,2: an ellipse x2

162 + y2

122 = 1, z = 24/5.

The extended boundary elements of the wedge (Figure 30b) are:

• Face FB,1: a cylinder x2

52 + y2

102 = 1, z = [−10, 10].

• Face FB,2: a cylinder (concave) x2

52 + y2

52 = 1, z = [−10, 10].

• Face FB,3: a plane z = 10.
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• Face FB,4: a plane z = −10.

• Edge EB,1: an ellipse x2

52 + y2

102 = 1, z = 10.

• Edge EB,2: an ellipse x2

52 + y2

102 = 1, z = −10.

• Edge EB,3: an ellipse x2

52 + y2

52 = 1, z = 10.

• Edge EB,4: an ellipse x2

52 + y2

52 = 1, z = −10.

• Edge EB,5: a line x = 5, y = 0, z = [−10, 10].

• Edge EB,6: a line x = −5, y = 0, z = [−10, 10].

• Vertices VB,1 = (−5, 0, 10), VB,2 = (5, 0, 10), VB,3 = (−5, 0,−10), VB,1 = (5, 0, 10).

We only consider the parts with y > 0 for all elements.

Figure 34: CCD of two general CQMs.
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The motions of A and B are

MA(t) =



1 0 0 −40t + 10

0 1 0 −20t + 10

0 0 1 0

0 0 0 1


, and

MB(t) =



αt2 + αt + 1 0 0 v0(t)

0 βt2 +
√

2t −βt2 + αt− 1 v1(t)

0 βt2 − αt + 1 βt2 +
√

2t v2(t)

0 0 0 αt2 − αt + 1


,

respectively, where α = 2−
√

2, β = 1−
√

2, and

v0(t) = (−120 + 60
√

2)t3 + (180− 90
√

2)t2 − (120− 30
√

2)t + 30,

v1(t) = (80− 40
√

2)t3 − (100− 50
√

2)t2 + (60− 10
√

2)t− 10,

v2(t) = (−40 + 20
√

2)t3 + (60− 30
√

2)t2 − (40− 10
√

2)t + 10.

The subproblems that we need to consider are given in Example 6.2.

The two CQMs have first contact at t = 0.2723 with the contact point (11.9080, 11.7540, 4.8)T

between the elements EA,1 and EB,4 (Figure 35).

Figure 35: First contact of the two CQMs in example 6.5.
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6.5 ccd of cqms with general boundary curves

Although we do not deal with CCD of CQMs with general boundary curve, we shall

give a brief idea of how this can be solved algebraically. A boundary edge of a general

CQM may not be a conic section, but rather the general degree four intersection curve of

two boundary quadrics (see, for example, Figure 27). First consider the CCD of an edge

and a face respectively from two general moving CQMs. Let a boundary curve I be the

intersection of two quadric surfaces A : XT AX = 0 and B : XT BX = 0. The curve I

touches (i.e., has a tangential contact point with) another quadric C : XTCX = 0 if and

only if the three quadrics A, B and C intersect at a multiple point. Hence, the problem

is reduced to a study on the intersection of three quadrics in 3D. Our preliminary

investigation suggests that the multiple intersection of A, B and C is indicated by that

the quartic curve G(α, β, γ) ≡ det(αA + βB + γC) = 0 has a singular point. Hence, to

resolve CCD of one moving boundary curve and a moving quadric, we need to develop

methods to detect the time t0 at which the moving planar quartic curve G(α, β, γ) = 0

has a singular point.

The case of CCD of two edges can be treated similarly, but reduced to the study of the

intersection of four quadrics, i.e., the two pairs of quadrics defining the two extended

boundary curves. This will lead to the study of the quadric net αA + βB + γC + δD or

the quartic surface H(α, β, γ, δ) ≡ det(αA + βB + γC + δD) = 0 with one parameter,

the motion time t. Hence, for contact computation of general CQMs, techniques based

on elimination theory for polynomials will be developed to compute the singularity of

the surface H = 0. Once the contact points between extended boundary elements are

computed, the subsequent step of contact verification can be done in the same way as

before.
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7
C O N C L U S I O N

We have presented a collection of work related to collision detection for quadrics or

conics moving with continuous motions. We adopt an algebraic treatment and our

general approach is to characterize a separation condition of two quadrics and conics,

based on the roots of their characteristic equation. For two static ellipsoids or two static

ellipses, we showed that they are separate if and only if their characteristic equation

has two distinct negative roots. We further develop efficient algorithms to deal with

CCD based on the separation condition.

For two ellipses, we solve their CCD by finding the zeros of a univariate polynomial.

Each root then corresponds to a real touching time instant between the two ellipses. In

particular, if the two ellipses are separate initially at t = 0, the first contact time will

correspond to an external contact. We devise efficient and robust numerical polynomial

computation to roots finding. For ellipses moving in the 3D space, we reduce CCD to

a 1D problem which can again be solved by using algebraic treatments.

For two ellipsoids, a computation procedure with minimal arithmetic operations is

devised to determine whether they are separate or not. In the case where the ellipsoids

are moving with on-the-fly motions, we devised a method to compute a separating

plane between a pair of separate ellipsoids and use it to accelerate collision detection

by exploiting temporal and geometric coherence of the ellipsoids. When the ellipsoids

are under pre-specified continuous motions, we formulate a bivariate characteristic

function and analyse its zero set. Significant speed-up was realized by developing an

efficient scheme to quickly compute the critical points of the zero set of the bivariate
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CCD equation, which correspond to the contact time instants of two ellipsoids, and

determine whether the ellipsoids are overlapping or separate within a time interval.

Our algebraic formulation based on roots characterization of the characteristic

equation is projective invariant, and therefore the above methods on ellipses and

ellipsoids can be extended to other conics and quadrics with little adaptation. We have

therefore developed also a framework for CCD of the composite quadric models (or

CQMs) whose edges are conic segments or line segments.

We have also shown with examples and experiments that our CCD methods are

robust and efficient, and are practical to apply to interactive applications.

We believe that there are many other interesting properties of our algebraic condition,

which should lead to more efficient geometric algorithms for dealing with ellipsoids (or

the other quadrics) and affine deformations. Further applications of the computational

tools reported in this thesis should therefore be investigated. The quadrics is the class

of degree two implicit surfaces. It would also be interesting to check the applicability

of our approach to the other more general implicit surfaces.
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